Skip to main content
Log in

An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications

  • Review Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Multifunctional materials having simultaneous electrical and magnetic assembling have been attempted by numerous researchers for next-generation electronic appliances. Among such materials, rare earth metals containing double perovskites, such as La2BB′O6 (B = Ni, B′ = Mn) are the utmost studied materials. In this review, we have summarized various physicochemical aspects of La2NiMnO6 such as crystal structure, electrical, magnetic, and magneto-transport behavior from earlier studies under several experimental conditions. Magnetic field and temperature effects on magnetoelectric and electronic behavior of this material are described. We discuss how the morphology in the form of bulk phase, thin layer, and nanoparticles affect such physicochemical properties of this material. We also highlighted the role of cation order–disorder at ‘B’ sites and the probability of the resulting numerous electronic behavior in this type of material and expectation on basic understanding of Ni–O–Mn electronic, as well as magnetic properties. The prospective applications of this material over conventional substances in solar cells, electric tunable devices, biomolecular and gas sensing technologies are also ascribed. The motivation of the present review is to sum up all such behaviors of La2NiMnO6 to find its possible applications in new areas of material research and the directions of future works.

Highlights

  • La2NiMnO6 double perovskite exhibits simultaneous electric and magnetic orderings

  • Crystal structure, magneto-electric, and transport nature affect the functionality of La2NiMnO6

  • Bulk phase, thin layer, and nanoparticles morphology affect the physical property of La2NiMnO6

  • La2NiMnO6 holds solar cell, electric tunable device, biomolecular and gas sensing applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Nature 55:426

    Google Scholar 

  2. Hill NA (2000) J Phys Chem B 104:6694

    CAS  Google Scholar 

  3. Kimura T, Sekio Y, Nakamura H, Seigrist T, Ramirez AP (2008) Nat Mater 7:291

    CAS  Google Scholar 

  4. Subramanian MA, He T, Chen J, Rogado N S, Calvarese T G, Sleight A W (2006) Adv Mater 18:1737

    CAS  Google Scholar 

  5. Yang C-H, Lee S-H, Koo TY, Jeong YH (2007) Phys Rev B 75:140104. (R)

    Google Scholar 

  6. Ramesh R, Spaldin NA (2007) Nat Mater 6:21

    CAS  Google Scholar 

  7. Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR (1993) Prog Solid State Chem 22:197

    CAS  Google Scholar 

  8. Goodenough JB (1955) Phys Rev 100:564

    CAS  Google Scholar 

  9. Kanamori J (1959) J Phys Chem Solids 10:87

    CAS  Google Scholar 

  10. Rogado NS, Li J, Sleight AW, Subramanian MA (2005) Adv Mater 17:2225

    CAS  Google Scholar 

  11. Dass RI, Yan J-Q, Goodenough JB (2003) Phys Rev B 68:064415

    Google Scholar 

  12. Yue-Lei Z, Yi-Sheng C, Li-Qing P, Young S (2013) Chin Phys B 22:087601

    Google Scholar 

  13. Iliev MN, Gospodinov MM, Singh MP, Meen J, Truong KD, Fournier P, Jandi S (2009) J Appl Phys 106:023515

    Google Scholar 

  14. Davies PK, Wu H, Borisevich AY, Molodetsky IE, Farber L (2008) Ann Rev Mater Res 38:369

    CAS  Google Scholar 

  15. Goodenough JB, Dass RI (2000) Int J Inorg Mater 2:3

    CAS  Google Scholar 

  16. Wold A, Arnott RJ, Goodenough JB (1958) J Appl Phys 29:387

    CAS  Google Scholar 

  17. Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare UV, Knut R, Karis O, Nordblad P, Sarma DD (2012) Phys Rev Lett 108:127201

    CAS  Google Scholar 

  18. Bull CL, Gleeson D, Knight KS (2003) J Phys Condens Matter 15:4927

    CAS  Google Scholar 

  19. Sayed FN, Achary SN, Jayakumar OD (2011) J Mater Res 26:567

    CAS  Google Scholar 

  20. Ullah M, Khan SA, Murtaza G, Khenata R, Ullah N, Omran SB (2015) J Magn Magn Mater 377:197

    CAS  Google Scholar 

  21. Wu Z, Cohen RE (2006) Phys Rev B 73:235116

    Google Scholar 

  22. Blascoa J, S nche MC, re -Cacho, Garc a, Sub as G, Campo J (2002) J Phys Chem Solids 63:781

    Google Scholar 

  23. Goodenough JB, Wold A, Arnott RJ, Menyuk N (1961) Phys Rev 124:373

    CAS  Google Scholar 

  24. Blasse G (1965) J Phys Chem Solids 26:1969

    CAS  Google Scholar 

  25. Blasco J, Garacia J, Sanchez MC, Campo J, Subias G, Perz-Cacho J (2002) Eur Phys J B 30:469

    CAS  Google Scholar 

  26. Ritter C, Ibarra MR, De Teresa JM, Algarabel PA, Marquina C, Blasco J, García J, Oseroff S, Cheong S-W (1997) Phys Rev B 56:8902

    CAS  Google Scholar 

  27. Sánchez RD, Causa MT, Sereni J, Vallet-Regí M, Sayagués MJ, González-Calbet JM (1993) J Alloys Compounds 191:287

    Google Scholar 

  28. Asai K, Sekizawa H, Iida S (1979) J Phys Soc Japan 47:1054

    CAS  Google Scholar 

  29. Matar SF, Subramanian MA, Villesuzanne A, Eyert V, Whangbo M-H (2007) J Magn Magn Mater 308:116

    CAS  Google Scholar 

  30. Zhu M, Lin Y, Lo EWC, Wang Q, Zhao Z, Xie W (2012) Appl Phys Lett 100:062406

    Google Scholar 

  31. Truong KD, Singh MP, Jandl S, Fournier P (2009) Phys Rev B 80:134424

    Google Scholar 

  32. Kang JS, Wi SC, Lee SS, Kim G, Yang HM, Lee BW, Han SW, Kim KH, Sekiyama A, Kasai S, Suga S, Shim JH, Min BI (2004) J Phys Condens Matter 16:S5685

    CAS  Google Scholar 

  33. Booth RJ, Fillman R, Whitaker H, Nag Abanti, Tiwari RM, Ramanujachary KV, Gopalakrishnan J, Lofland SE (2009) Mater Res Bull 44:1559

    CAS  Google Scholar 

  34. Singh MP, Grygiel C, Sheets WC, Boullay Ph, Hervieu M, Prellier W, Mercey B, Simon Ch, Raveau B (2007) Appl Phys Lett 91:012503

    Google Scholar 

  35. Joly VLJ, Joy PA, Date SK, Gopinath CS (2002) Phys Rev B 65:184416

    Google Scholar 

  36. Chandrasekhar KD, Das AK, Venimadhav A (2012) J Phys Condens Matter 24:376003

    Google Scholar 

  37. Iliev MN, Guo H, Gupta A (2007) Appl Phys Lett 90:151914

    Google Scholar 

  38. Zhou S, Shi L, Yang H, Zhao J (2007) Appl Phys Lett 91:172505

    Google Scholar 

  39. Nair HS, Swain DA, Hariharan N, Adiga S, Narayana C, Elzabeth S (2011) J Appl Phys 110:123919

    Google Scholar 

  40. von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Phys Rev Lett 71:331

    Google Scholar 

  41. Hwang HY, Cheong S-W, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041

    CAS  Google Scholar 

  42. Kobayashi K-I, Kimura T, Sawada H, Terakura K, Tokura Y (1998) Nature 395:677

    CAS  Google Scholar 

  43. Sarma DD, Ray Sugata, Tanaka K, Kobayashi M, Fujimori A, Sanyal P, Krishnamurthy HR, Dasgupta C (2007) Phys Rev Lett 98:157205

    CAS  Google Scholar 

  44. Du CH, Adur R, Wang HL, Hauser AdamJ, Yang FY, Hammel PChris (2013) Phys Rev Lett 110:147204

    Google Scholar 

  45. Hashisaka M, Kan D, Masuno A, Takano M, Shimakawa Y, Terashima T, Mibu K (2006) Appl Phys Lett 89:032504

    Google Scholar 

  46. Wang XJ, Sui Y, Li Y, Li L, Zhang XQ, Wang Y, Liu ZG, Su WH, Tang JK (2009) Appl Phys Lett 95:252502

    Google Scholar 

  47. Zhou SM, Guo YQ, Zhao JY, Zhao SY, Shi L (2010) Appl Phys Lett 96:262507

    Google Scholar 

  48. Garc a-Hernande M, Mart ne L, Mart ne -Lope M, Casais MT, Alonso JA (2001) Phys Rev Lett 86:2443

    Google Scholar 

  49. Singh VN, Majumdar P (2011) EPL 94:47004

    Google Scholar 

  50. Guo Y, Shi L, Zhou S, Zhao J, Liu W (2013) Appl Phys Lett 102:222401

    Google Scholar 

  51. Mostovoy M, Scaramucci A, Spaldin NA, Delaney KT (2010) Phys Rev Lett 105:087202

    Google Scholar 

  52. Kitagawa Y et al. (2010) Nat Mater 9:797

    CAS  Google Scholar 

  53. Fiebig M (2005) J Phys D 38:R123

    CAS  Google Scholar 

  54. Shvartsman VV et al. (2008) Phys Rev Lett 101:165704

    CAS  Google Scholar 

  55. Choudhury D et al. (2011) Phys Rev B 84:125124

    Google Scholar 

  56. Singh MP, Grygiel C, Sheets WC, Boullay Ph, Hervieu M, Prellier W, Mercey B, Simon C, Raveau B (2007) Appl Phys Lett 91:012503

    Google Scholar 

  57. Boullay P, Grygiel C, Rautama EL, Singh MP, Kundu AK (2007) Mater Sci Eng B 144:49

    CAS  Google Scholar 

  58. Guo H, Burgess J, Street S, Gupta A, Calvarese TG, Subramanian MA (2006) Appl Phys Lett 89:022509

    Google Scholar 

  59. Guo HZ, Burgess J, Ada E, Street S, Gupta A, Iliev MN, Kellock AJ, Magen C, Varela M, Pennycook SJ (2008) Phys Rev B 77:174423

    Google Scholar 

  60. Kitamura M, Ohkubo I, Kubota M, Matsumoto Y, Koinuma H, Oshima M (2009) Appl Phys Lett 94:132506

    Google Scholar 

  61. Singh MP, Simon C, Raveau B, Prellier W (2006) Appl Phys Lett 89:022509

    Google Scholar 

  62. Singh MP, Truong KD, Fournier P (2007) Appl Phys Lett 91:042504

    Google Scholar 

  63. Padhan P, Guo HZ, LeClair P, Gupta A (2008) Appl Phys Lett 92:022909

    Google Scholar 

  64. Singh MP, Truong KD, Jandl S, Fournier P (2009) Phys Rev B 79:224421

    Google Scholar 

  65. Mitchell RG (2004) Perovskites. Modern and Ancient Almaz Press, Canada Chap. 1

    Google Scholar 

  66. Wu S-Q, Cheng S, Lu L, Liu M, Jin X-W, Cheng S-D, Mi S-B (2018) Sci Rep 8:2516

  67. Zhao S, Shi L, Zhou S, Zhao J, Yang H, Y. (2009) J Appl Phys 106:123901

    Google Scholar 

  68. Hossain A, Bandyopadhyay P, Guin PS, Roy S (2017) Appl Mat Today 9:300

    Google Scholar 

  69. Hossain A, Ghosh D, Dutta U, Walke PS, Mordvinova NE, Lebedev OI, Sinha B, Pal K, Gayen A, Kundu AK, Seikh M (2017) J Magnetis Mag Mat 444:68

    CAS  Google Scholar 

  70. Singh DJ, Park CH (2008) Phys Rev Lett 100:087601

    CAS  Google Scholar 

  71. Masud MG, Ghosh A, Sannigrahi J, Chaudhuri BK (2012) J Phys Condens Matter 24:295902

    Google Scholar 

  72. Chandrsekhara KD, Das AK, Venimadhav A (2012) AIP Conf Proc 1447:1237

    Google Scholar 

  73. Chakraborty D, Nandi UN, Jana D, Masud MdG, Giri S (2015) J Appl Phys 118:035103

    Google Scholar 

  74. Zhao S, Shi Lei, Zhou S, Zhao J, Yang H, Guo Y (2009) J Appl Phys 106:123901

    Google Scholar 

  75. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Amer Chem Soc 131:6050

    CAS  Google Scholar 

  76. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) Science 348:1234

    CAS  Google Scholar 

  77. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Science 347:967

    CAS  Google Scholar 

  78. Kazim S, Na eeruddin MK, Gr€at el M, Ahmad S (2014) Angew Chem Int Ed 53:2812

    CAS  Google Scholar 

  79. Gao P, Gr€at el M, Nazeeruddin MK (2014) Energy Environ Sci 7:2448

    CAS  Google Scholar 

  80. Zhang Z, Jian H, Tang X, Yang J, Zhu X, Sun Y (2012) Dalton Trans 41:11836

    CAS  Google Scholar 

  81. Lan C, Zhao S, Xu T, Ma J, Hayase S, Ma T (2016) J Alloys Compd 655:208

    CAS  Google Scholar 

  82. Bern F, Ziese M, Setzer A, Pippel E, Hesse D, Vrejoiu I, Physics J (2013) Cond Matter 25:496003

    CAS  Google Scholar 

  83. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759

    CAS  Google Scholar 

  84. Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Bios Bioeng 100:1

    CAS  Google Scholar 

  85. Atique Ullah AKM, Kabir MF, Akter M, Tamanna AN, Hossain A, Tareq ARM, Khan MNI, Fazle Kibria AKM, Kurasaki Masaaki, Rahman MM (2018) RSC Adv 8:37176–37183

    Google Scholar 

  86. Tang DP, Yuan R, Chai YQ (2006) J Phys Chem B 110:11640

    CAS  Google Scholar 

  87. Banerjee R, Katsenovich Y, Lagos L (2010) Curr Med Chem 2010:3120

    Google Scholar 

  88. Kim WS, Anoop G, Lee HJ, Su Lee S, Kwak JH, Lee H, Jo JY (2016) J Cat 344:578

    CAS  Google Scholar 

  89. Haider MA, Capizzi AJ, Murayama M (2011) Steven McIntosh Solid State Ionics 196:65

    CAS  Google Scholar 

  90. Tang IM, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-O W (2011) Nanoscale Res Lett 6:19

    Google Scholar 

  91. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237

    CAS  Google Scholar 

  92. Fan HM, Yi JB, Yang Y (2009) ACS Nano 3:2798

    CAS  Google Scholar 

  93. Kim HJ, Ahn JE, Haam S (2006) J Mater Chem 16:1617

    CAS  Google Scholar 

  94. Ruan J, Ji JJ, Song H, Qian QR, Wang K, Wang C, Cui DX (2012) Nanoscale Res Lett 7:309

    Google Scholar 

  95. Kopac T, Bozgeyik K, Yener J (2008) Colloids Surfactants A 322:19

    CAS  Google Scholar 

  96. Rezwan K, Meier LP, Gauckler LJ (2005) Biomaterials 26:4351

    CAS  Google Scholar 

  97. Rezwan K, Studart AR, Voros J (2005) J Phys Chem B 109:14469

    CAS  Google Scholar 

  98. Seitz R, Brings R, Geiger R (2005) Appl Surf Sci 252:154

    CAS  Google Scholar 

  99. Hollmann O, Czeslik C (2006) Langmuir 22:3300

    CAS  Google Scholar 

  100. Wu Z-Y, Ma C-B, Tang X-G, Li R, Liu Q-X, Chen B-T (2013) Nanoscale Res Lett 8:207

    Google Scholar 

  101. Kleemann W, Dec J, Wang R, Itoh M (2003) Phys RevB 67:092107

    Google Scholar 

  102. Liang X, Wu W, Meng Z (2003) Mater Sci Eng B 99:366

    Google Scholar 

  103. Maiti T, Guo R, Bhalla AS (2007) Appl Phys Lett 90:182901

    Google Scholar 

  104. Tang MH, Hou JW, Zhang J, Dong GJ, Shu W (2010) Solid State Comm. 50:1453

    Google Scholar 

  105. Li C, Liu B, He Y, Lv C, He H, Xu Y (2014) J Alloys Compd 590:541

    CAS  Google Scholar 

  106. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5

    CAS  Google Scholar 

  107. Kim B, Choi HC, Kim BH, Min BI (2010) Phys Rev B 81:224402

    Google Scholar 

  108. Yang WZ, Liu XQ, Lin YQ, Chen XM (2011) J Appl Phys 111:084106

    Google Scholar 

  109. Cao Z, Li Z, Gao Y, Liu J, Ruan X, Fang M (2014) Phys Status Solidi 211:1207

    CAS  Google Scholar 

  110. Gavin L (2012) Physics 5:35

    Google Scholar 

  111. Lin YQ, Chen XM, Liu XQ (2009) Solid State Commun 149:784

    CAS  Google Scholar 

  112. Chandrasekhar KD, DAS AK, Mitra C, Venimadhav A (2012) J Phys 24:495901

    Google Scholar 

  113. Hippel ARVon (1966) Dielectrics and Waves. MIT Press, Cambridge

    Google Scholar 

  114. Wang CC, He M, Yang F, Wen J, Liu GZ, Lu HB (2007) Appl Phys Lett 90:192904

    Google Scholar 

  115. Yu J, Ishikawa T, Arai Y, Yoda S, Itoh M, Saita Y (2005) Appl Phys Lett 87:252904

    Google Scholar 

  116. Agrawal S, Manuspiya H, Guo R, Agrawal D, Bhalla AS (2004) Ceram Trans 150:299

    CAS  Google Scholar 

  117. Chen H, Cao Z, Wang L, He W, Sun J, Zhang Y, Ruan X (2014) J Alloys Compd 616:213

    CAS  Google Scholar 

  118. Biswal AK, Ray J, Kuila S, Vishwakarma PN (2015) Vol. 1665, AIP Conference Proceedings, p 140050, AIP Publishing LLC, NY USA

  119. Labidi A, Jacolin C, Bendahan M, Abdelghani A, Guerin J, Aguir K, Maaref M (2005) Sensor Sensor Actuat B-Chem 106:713

    CAS  Google Scholar 

  120. Orlandi F, Righi L, Ritter C, Pernechele C, Solzi M, Cabassi R, Bolzoni F, Calestani G (2014) J Mat Chem C 2:9215

    CAS  Google Scholar 

  121. Hossaina A, Bandyopadhyay P, Roy S (2018) J Alloys Comd 740:414

    Google Scholar 

  122. Atique Ullah AKM, Kibria AKMF, Akter M, Khan MNI, Maksud MA, Jahan RA, Firoz SH (2017) J Saudi Chem Soc. 21:822

    Google Scholar 

  123. Gilev AR, Hossain A, Kiselev EA, Cherepanov VA (2018) Solid State Ionics 323:64–71

    CAS  Google Scholar 

  124. Karimunnesa S, Ullah AKMA, Hasan MR, Shanta FS, Islam R, Khan MNI (2018) Effect of holmium substitution on the structural, magnetic and transport properties of CoFe2-xHoxO4 ferrites. J Magn Magn Mater 457:57

    CAS  Google Scholar 

  125. Dutta Uma, Hossain Aslam, Walke PravinS, Ghosh Debamalya, Mordvinova NataliaE, Lebedev OlegI, Haque Ariful, Pal Kamalesh, Gayen Arup, Kundu AsishK, Seikh MdMotin (2019) J Alloys Compd 777:1396

    CAS  Google Scholar 

  126. Hossain Aslam, Roy Sanjay, Sakthipandi K (2019) Ceram Int 45:4152

    CAS  Google Scholar 

  127. Atique Ullah AKM, Hossain A, Akter M, Kabir MF, Khan MNI, Kibria AKMFazle, Firoz ShakhawatH (2019) Mater Lett 238:151

    Google Scholar 

  128. Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F (2015) Nat Photonics 9:61

    CAS  Google Scholar 

  129. Masud MG, Ghosh A, Sannigrahi J, Chaudhuri BK (2012) J Phys Condens Matter 24:295902

    Google Scholar 

  130. Kumar P, Ghara S, Rajeswara B, Muthu DVS, Sundaresan A, Sood AK (2014) Solid State Commun 184:47

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. M. Atique Ullah, Partha Sarathi Guin or Sanjay Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, A., Atique Ullah, A.K.M., Sarathi Guin, P. et al. An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications. J Sol-Gel Sci Technol 93, 479–494 (2020). https://doi.org/10.1007/s10971-019-05054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05054-8

Keywords

Navigation