Skip to main content
Log in

Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient carbon-based metal-free electrocatalysts can bridge the gap between laboratory studies and practical applications of CO2 reduction. However, along with the ambiguous understanding of the active sites in carbon-based electrocatalysts, carbon-based electrocatalysts with high selectivity and satisfactory stability for electroreduction of CO2 remain rare. Here, using the nitrogen rich silk cocoon as a precursor, carbon-based electrocatalysts with intrinsic defects can be prepared for efficient and long-term electroreduction of CO2 by a simple two-step carbonization. The obtained electrocatalyst can catalyze CO2 reduction to CO with a Faradaic efficiency of ~ 89% and maintain good selectivity for about 10 days. Particularly, our experimental studies suggest that in-plane defects are the main active sites on which the rate-determining step for CO2 reduction should be the direct electron transfer to CO2 but not the proton-coupled electron transfer. Further theoretical calculations consistently demonstrate that the intrinsic defects in carbon matrix, particularly the pentagon-containing defects, act as main active sites to accelerate the direct electron transfer for CO2 reduction. In addition, our synthetic approach can convert egg white into efficient catalysts for CO2 electroreduction. These findings, providing new insights into the biomass-derived catalysts, should pave the way for fabricating efficient and stable carbon-based electrocatalysts with catalytically active defects by using naturally abundant precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res.2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  2. Song, R. B.; Zhu, W. L.; Fu, J. J.; Chen, Y.; Liu, L.; Zhang, J. R.; Lin, Y.; Zhu, J. J. Electrode materials engineering in electrocatalytic CO2 reduction: Energy input and conversion efficiency. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.201903796.

  3. Wu, J. J.; Sharifi, T.; Gao, Y.; Zhang, T. Y.; Ajayan, P. M. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater.2019, 31, 1804257.

    Article  Google Scholar 

  4. Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater.2016, 28, 3423–3452.

    Article  CAS  Google Scholar 

  5. Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res.2019, 12, 2866–2871.

    Article  CAS  Google Scholar 

  6. Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun.2013, 4, 2819.

    Article  Google Scholar 

  7. Liu, X.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater.2016, 1, 16064.

    Article  CAS  Google Scholar 

  8. Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev.2018, 47, 7628–7658.

    Article  CAS  Google Scholar 

  9. Yan, X. C.; Jia, Y.; Odedairo, T.; Zhao, X. J.; Jin, Z.; Zhu, Z. H.; Yao, X. D. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chem. Commun.2016, 52, 8156–8159.

    Article  CAS  Google Scholar 

  10. Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc.2014, 136, 7845–7848.

    Article  CAS  Google Scholar 

  11. Wang, H. X.; Chen, Y. B.; Hou, X. L.; Ma, C. Y.; Tan, T. W. Nitrogendoped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem.2016, 18, 3250–3256.

    Article  CAS  Google Scholar 

  12. Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res.2019, 12, 2324–2329.

    Article  CAS  Google Scholar 

  13. Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C. S.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun.2016, 7, 13869.

    Article  CAS  Google Scholar 

  14. Cui, X. Q.; Pan, Z. Y.; Zhang, L. J.; Peng, H. S.; Zheng, G. F. Selective etching of nitrogen-doped carbon by steam for enhanced electrochemical CO2 reduction. Adv. Energy Mater.2017, 7, 1701456.

    Article  Google Scholar 

  15. Ghausi, M. A.; Xie, J. F.; Li, Q. H.; Wang, X. Y.; Yang, R.; Wu, M.; Wang, Y.; Dai, L. CO2 overall splitting by a bifunctional metal-free electrocatalyst. Angew. Chem., Int. Ed.2018, 57, 13135–13139.

    Article  CAS  Google Scholar 

  16. Chen, Z. P.; Mou, K. W.; Yao, S. Y.; Liu, L. C. Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogendoped PC61BM. J. Mater. Chem. A2018, 6, 11236–11243.

    Article  CAS  Google Scholar 

  17. Li, H. Q.; Xiao, N.; Hao, M. Y.; Song, X. D.; Wang, Y. W.; Ji, Y. Q.; Liu, C.; Li, C.; Guo, Z.; Zhang, F. et al. Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chem. Eng. J.2018, 351, 613–621.

    Article  CAS  Google Scholar 

  18. Tuci, G.; Filippi, J.; Ba, H.; Rossin, A.; Luconi, L.; Pham-Huu, C.; Vizza, F.; Giambastiani, G. How to teach an old dog new (electrochemical) tricks: Aziridine-functionalized CNTs as efficient electrocatalysts for the selective CO2 reduction to CO. J. Mater. Chem. A2018, 6, 16382–16389.

    Article  CAS  Google Scholar 

  19. Hursán, D.; Samu, A. A.; Janovák, L.; Artyushkova, K.; Asset, T.; Atanassov, P.; Janáky, C. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes. Joule2019, 3, 1719–1733.

    Article  Google Scholar 

  20. Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defectdriven electrocatalytic reduction of carbon dioxide. Adv. Mater.2019, 31, 1808276.

    Article  Google Scholar 

  21. Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal.2019, 2, 688–695.

    Article  CAS  Google Scholar 

  22. Titirici, M. Defects win over pyridinic sites. Nat. Catal.2019, 2, 642–643.

    Article  Google Scholar 

  23. Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem., Int. Ed.2019, 58, 3859–3864.

    Article  CAS  Google Scholar 

  24. Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal.2015, 5, 6707–6712.

    Article  CAS  Google Scholar 

  25. Daiyan, R.; Tan, X.; Chen, R.; Saputera, W. H.; Tahini, H. A.; Lovell, E.; Ng, Y. H.; Smith, S. C.; Dai, L. M.; Lu, X. Y. et al. Electroreduction of CO2 to CO on a mesoporous carbon catalyst with progressively removed nitrogen moieties. ACS Energy Lett.2018, 3, 2292–2298.

    Article  CAS  Google Scholar 

  26. Li, W. L.; Herkt, B.; Seredych, M.; Bandosz, T. J. Pyridinic-N groups and ultramicropore nanoreactors enhance CO2 electrochemical reduction on porous carbon catalysts. Appl. Catal. B: Environ.2017, 207, 195–206.

    Article  CAS  Google Scholar 

  27. Li, F. W.; Xue, M. Q.; Knowles, G. P.; Chen, L.; MacFarlane, D. R.; Zhang, J. Porous nitrogen-doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO. Electrochim. Acta2017, 245, 561–568.

    Article  CAS  Google Scholar 

  28. Lu, M.; Qian, Y. J.; Yang, C. C.; Huang, X.; Li, H.; Xie, X. J.; Huang, L.; Huang, W. Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy2017, 32, 382–388.

    Article  CAS  Google Scholar 

  29. Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. Carbonization of a stable ß-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun.2015, 6, 7145.

    Article  Google Scholar 

  30. Jones, F.; Tran, H.; Lindberg, D.; Zhao, L. M.; Hupa, M. Thermal stability of zinc compounds. Energy Fuels2013, 27, 5663–5669.

    Article  CAS  Google Scholar 

  31. Caturla, F.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon1991, 29, 999–1007.

    Article  CAS  Google Scholar 

  32. Liu, S.; Yang, H. B.; Huang, X.; Liu, L. H.; Cai, W. Z.; Gao, J. J.; Li, X. N.; Zhang, T.; Huang, Y. Q.; Liu, B. Identifying active sites of nitrogendoped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater.2018, 28, 1800499.

    Article  Google Scholar 

  33. Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem., Int. Ed.2016, 55, 9297–9300.

    Article  CAS  Google Scholar 

  34. Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed.2018, 57, 12303–12307.

    Article  CAS  Google Scholar 

  35. Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci.2017, 3, 847–852.

    Article  CAS  Google Scholar 

  36. Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem., Int. Ed.2017, 56, 10840–10844.

    Article  CAS  Google Scholar 

  37. Wang, R. M.; Sun, X. H.; Ould-Chikh, S.; Osadchii, D.; Bai, F.; Kapteijn, F.; Gascon, J. Metal-organic-framework-mediated nitrogendoped carbon for CO2 electrochemical reduction. ACS Appl. Mater. Interfaces2018, 10, 14751–14758.

    Article  CAS  Google Scholar 

  38. Wang, H.; Jia, J.; Song, P. F.; Wang, Q.; Li, D. B.; Min, S. X.; Qian, C. X.; Wang, L.; Li, Y. F.; Ma, C. et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery. Angew. Chem., Int. Ed.2017, 56, 7847–7852.

    Article  CAS  Google Scholar 

  39. Lee, C. W.; Cho, N. H.; Im, S. W.; Jee, M. S.; Hwang, Y. J.; Min, B. K.; Nam, K. T. New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction. J. Mater. Chem. A2018, 6, 14043–14057.

    Article  CAS  Google Scholar 

  40. Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared bi-based materials. J. Am. Chem. Soc.2014, 136, 8361- 8367.

    Article  CAS  Google Scholar 

  41. Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc.2017, 139, 17109–17113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key R&D Program of China (No. 2017YFA0207201), Six Talent Peaks Project in Jiangsu Province (No. JNHB-038), and Young Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqi Tian, Min Lu or Xiaoji Xie.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, S., Zhang, H. et al. Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Res. 13, 729–735 (2020). https://doi.org/10.1007/s12274-020-2683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2683-2

Keywords

Navigation