Skip to main content
Log in

Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Herein, phloroglucinol tristearate (PhgTS) was used to study the crystallization process due to its unique symmetric structure containing a benzene ring and three aliphatic chains. Spherulites of crystallized PhgTS from four solvents under diverse conditions were analyzed in detail and their formation process was studied. Maltese cross is shown by PhgTS spherulites obtained from aprotic solvents via polarized optical microscopy. In comparison, no Maltese cross can be observed from branch-like crystals formed from protic solvents. Independent on the microscaled morphology, lamellae were found to be the basic blocks constructing both PhgTS spherulites and branchlike crystals, which were formed predominantly by stacked PhgTS molecules. Although differential characters of the solvents did not affect the formation of lamellas, the solvents played a crucial role in the formation of selfassembled microscaled morphologies. In particular, the morphologies of spherulites were strongly affected by the concentration of PhgTS solutions, surrounding temperature and evaporation rate of solvents. Generally, a higher concentration of PhgTS led to more homogeneous spherulites, a lower evaporation rate resulted in more compact spherulites, and a higher surrounding temperature generated preferentially more ring-banded spherulites of PhgTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keith H, Padden F Jr. A phenomenological theory of spherulitic crystallization. Journal of Applied Physics, 1963, 34(8): 2409–2421

    Article  CAS  Google Scholar 

  2. Shtukenberg A G, Punin Y O, Gunn E, Kahr B. Spherulites. Chemical Reviews, 2012, 112(3): 1805–1838

    Article  CAS  PubMed  Google Scholar 

  3. Reddy S M M, Shanmugam G, Mandal A B. “Cross-linked fibrous” spherulites formed from a low molecular weight compound, Fmocfunctionalized phenolic amino acid. Soft Matter, 2015, 11(21): 4154–4157

    Article  CAS  PubMed  Google Scholar 

  4. Samuels S L, Wilkes G L. The rheo-optical and mechanical behavior of a systematic series of hard-soft segmented urethanes. Journal of Polymer Science: Polymer Symposia, 1973, 43(1): 149–178

    Google Scholar 

  5. Lugito G, Woo E M. Interior lamellar assembly in correlation to topsurface banding in crystallized poly (ethylene adipate). Crystal Growth & Design, 2014, 14(10): 4929–4936

    Article  CAS  Google Scholar 

  6. Imai H, Oaki Y. Emergence of morphological chirality from twinned crystals. Angewandte Chemie International Edition, 2004, 43(11): 1363–1368

    Article  CAS  PubMed  Google Scholar 

  7. Cui X, Rohl A L, Shtukenberg A, Kahr B. Twisted aspirin crystals. Journal of the American Chemical Society, 2013, 135(9): 3395–3398

    Article  CAS  PubMed  Google Scholar 

  8. Woo E M, Lugito G, Yang C E. Analysis of crystal assembly in banded spherulites of phthalic acid upon solvent evaporation. CrystEngComm, 2016, 18(6): 977–985

    Article  CAS  Google Scholar 

  9. Atwood J. Comprehensive Supramolecular Chemistry II. 2nd Edition. Amsterdam: Elsevier, 2017, 1–10

    Google Scholar 

  10. Lehn J M, Sanders J. Supramolecular Chemistry. Concepts and Perspectives. Angewandte Chemie International Edition, 1995, 34 (22): 2563

    Google Scholar 

  11. Betush R J, Urban J M, Nilsson B L. Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides. Peptide Science, 2018, 110(1): e23099

    Article  Google Scholar 

  12. Payne W M, Svechkarev D, Kyrychenko A, Mohs A M. The role of hydrophobic modification on hyaluronic acid dynamics and selfassembly. Carbohydrate Polymers, 2018, 182: 132–141

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu T. Molecular self-assembly into one-dimensional nanotube architectures and exploitation of their functions. Bulletin of the Chemical Society of Japan, 2008, 81(12): 1554–1566

    Article  CAS  Google Scholar 

  14. Bogie P M, Holloway L R, Lyon Y, Onishi N C, Beran G J, Julian R R, Hooley R J. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly. Inorganic Chemistry, 2018, 57(7): 4155–4163

    Article  CAS  PubMed  Google Scholar 

  15. Knight A S, Larsson J, Ren J M, Bou Zerdan R, Seguin S, Vrahas R, Liu J, Ren G, Hawker C J. Control of amphiphile self-assembly via bioinspired metal ion coordination. Journal of the American Chemical Society, 2018, 140(4): 1409–1414

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh S, Praveen V K, Ajayaghosh A. The chemistry and applications of π-gels. Annual Review of Materials Research, 2016, 46(1): 235–262

    Article  CAS  Google Scholar 

  17. Yamamoto Y. Programmed self-assembly of large π-conjugated molecules into electroactive one-dimensional nanostructures. Science and Technology of Advanced Materials, 2012, 13(3): 033001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jain A, George S J. New directions in supramolecular electronics. Materials Today, 2015, 18(4): 206–214

    Article  CAS  Google Scholar 

  19. Moulin E, Cid J J, Giuseppone N. Advances in supramolecular electronics-from randomly self-assembled nanostructures to addressable self-organized interconnects. Advanced Materials, 2013, 25(3): 477–487

    Article  CAS  PubMed  Google Scholar 

  20. Cai L, Shi Y C. Self-assembly of short linear chains to A-and B-type starch spherulites and their enzymatic digestibility. Journal of Agricultural and Food Chemistry, 2013, 61(45): 10787–10797

    Article  CAS  PubMed  Google Scholar 

  21. Zhou X, Zhang Q, Xu R, Chen D, Hao S, Nie F, Li H. A novel spherulitic self-assembly strategy for organic explosives: Modifying the hydrogen bonds by polymeric additives in emulsion crystallization. Crystal Growth & Design, 2018, 18(4): 2417–2423

    Article  CAS  Google Scholar 

  22. Zhang M, Chen M, Ni Z. Thermoreversible rheological responses of biscarbamates and tricarbamates in uncured epoxy composite pastes caused by their self-assembly in an epoxy matrix. Journal of Applied Polymer Science, 2018, 135(13): 46032

    Article  Google Scholar 

  23. Zhang K, Geissler A, Chen X, Rosenfeldt S, Yang Y, Forster S, Müller-Plathe F. Polymeric flower-like microparticles from selfassembled cellulose stearoyl esters. ACS Macro Letters, 2015, 4(2): 214–219

    Article  CAS  Google Scholar 

  24. Braun D E, Tocher D A, Price S L, Griesser U J. The complexity of hydration of phloroglucinol: A comprehensive structural and thermodynamic characterization. Journal of Physical Chemistry B, 2012, 116(13): 3961–3972

    Article  CAS  Google Scholar 

  25. Zhou J H, Sui Z J, Zhu J, Li P, Chen D, Dai Y C, Yuan W K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon, 2007, 45(4): 785–796

    Article  CAS  Google Scholar 

  26. Forster S, Fischer S, Zielske K, Schellbach C, Sztucki M, Lindner P, Perlich J. Calculation of scattering-patterns of ordered nano-and mesoscale materials. Advances in Colloid and Interface Science, 2011, 163(1): 53–83

    Article  CAS  PubMed  Google Scholar 

  27. El Aziz Y, Bassindale A R, Taylor P G, Stephenson R A, Hursthouse M B, Harrington R W, Clegg W. X-ray crystal structures, packing behavior, and thermal stability studies of a homologous series of n-alkyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules, 2013, 46(3): 988–1001

    Article  CAS  Google Scholar 

  28. Heeley E L, Hughes D J, El Aziz Y, Taylor P G, Bassindale A R. Linear long alkyl chain substituted POSS cages: The effect of alkyl chain length on the self-assembled packing morphology. Macromolecules, 2013, 46(12): 4944–4954

    Article  CAS  Google Scholar 

  29. Cui X, Shtukenberg A G, Freudenthal J, Nichols S, Kahr B. Circular birefringence of banded spherulites. Journal of the American Chemical Society, 2014, 136(14): 5481–5490

    Article  CAS  PubMed  Google Scholar 

  30. Huang T, Kuboyama K, Fukuzumi H, Ougizawa T. PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence. Cellulose (London, England), 2018, 25(4): 2393–2403

    CAS  Google Scholar 

  31. Danjo T, Enomoto Y, Shimada H, Nobukawa S, Yamaguchi M, Iwata T. Zero birefringence films of pullulan ester derivatives. Scientific Reports, 2017, 7(1): 46342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.Y. thanks the China Scholarship Council (CSC) for financial support. K.Z. thanks Georg-August-University of Goettingen for the Anschubfinanzierung (Funding for the Promotion of Young Academics of University of Goettingen) and Fonds der Chemischen Industrie (FCI) for the financial support. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Rosenfeldt, S. & Zhang, K. Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate. Front. Chem. Sci. Eng. 14, 389–396 (2020). https://doi.org/10.1007/s11705-019-1911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1911-3

Keywords

Navigation