Skip to main content
Log in

Probing non-polarizable liquid/liquid interfaces using scanning ion conductance microscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The study of microscopic structure of a liquid/liquid interface is of fundamental importance due to its close relation to the thermodynamics and kinetics of interfacial charge transfer reactions. In this article, the microscopic structure of a non-polarizable water/nitrobenzene (W/NB) interface was evaluated by scanning ion conductance microscope (SICM). Using SICM with a nanometer-sized quartz pipette filled with an electrolyte solution as the probe, the thickness of this type of W/NB interface could be measured at sub-nanometer scale, based on the continuous change of ionic current from one phase to another one. The effects for thicknesses of the non-polarizable W/NB interfaces with different electrolyte concentrations, the Galvani potentials at the interface and the applied potentials on the probe were measured and systematically analyzed. Both experimental setups, that is an organic phase up and an aqueous down, and a reverse version, were employed to acquire the approach curves. These data were compared with those of an ideal polarizable interface under the similar experimental conditions, and several characteristics of non-polarizable interfaces were found. The thickness of a non-polarizable interface increases with the decrease of electrolyte concentration and the increase of applied potential, which is similar to the situation of a polarizable liquid/liquid interface. We also find that the Galvani potential across a non-polarizable interface can also influence the interfacial thickness, this phenomenon is difficult to observe when using polarizable interface. Most importantly, by the comparison of two kinds of liquid/liquid interfaces, we experimentally proved that much more excess ions are gathered in the space charge layer of non-polarizable interfaces than in that of polarizable interfaces. These results are consistent with the predictions of molecular dynamic simulations and X-ray reflectivity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Girault H. Electrochemistry at liquid-liquid interfaces. In: Bard AJ, Zoski CG, Eds. Electroanalytical Chemistry. Boca Raton: CRC Press, 2010. 1–104

    Google Scholar 

  2. Liu S, Li Q, Shao Y. Chem Soc Rev, 2011, 40: 2236–2253

    Article  CAS  Google Scholar 

  3. Dryfe RAW. The electrified liquid-liquid interface. In: Rice SA, Ed. Advances in Chemical Physics. New York: John Wiley & Sons, Inc., 2009. 153–215

    Chapter  Google Scholar 

  4. Jing P, He S, Liang Z, Shao Y. Anal Bioanal Chem, 2006, 385: 428–432

    Article  CAS  Google Scholar 

  5. Liu B, Mirkin MV. Anal Chem, 2001, 73: 670 A–677 A

    CAS  Google Scholar 

  6. Webster RD, Beaglehole D. Phys Chem Chem Phys, 2000, 2: 5660–5666

    Article  CAS  Google Scholar 

  7. Mąkosza M, Fedoryński M. Catal Rev, 2003, 45: 321–367

    Article  Google Scholar 

  8. Starks CM. J Am Chem Soc, 1971, 93: 195–199

    Article  CAS  Google Scholar 

  9. Herriott AW, Picker D. Chemischer Infsdienst, 1975, 97: no

  10. Osakai T, Yuguchi Y, Gohara E, Katano H. Langmuir, 2010, 26: 11530–11537

    Article  CAS  Google Scholar 

  11. Gouy G. Compt Ren, 1910, 149: 654–656

    CAS  Google Scholar 

  12. Chapman DL. London Edinburgh Dublin Philos Mag J Sci, 1913, 25: 475–481

    Article  Google Scholar 

  13. Verwey EJW, Niessen KF. London Edinburgh Dublin Philos Mag J Sci, 1939, 28: 435–446

    Article  CAS  Google Scholar 

  14. Gros M, Gromb S, Gavach C. J Electroanal Chem Interfacial Electrochem, 1978, 89: 29–36

    Article  CAS  Google Scholar 

  15. Girault HH, Schiffrin DJ. J Electroanal Chem Interfacial Electrochem, 1983, 150: 43–49

    Article  CAS  Google Scholar 

  16. Monroe CW, Urbakh M, Kornyshev AA. J Electroanal Chem, 2005, 582: 28–40

    Article  CAS  Google Scholar 

  17. Benjamin I. Annu Rev Phys Chem, 1997, 48: 407–451

    Article  CAS  Google Scholar 

  18. Benjamin I. Acc Chem Res, 1995, 45: 233–239

    Article  Google Scholar 

  19. Bell AJ, Frey JG, VanderNoot TJ. Faraday Trans, 1992, 88: 2027–2030

    Article  CAS  Google Scholar 

  20. Steel WH, Walker RA. Nature, 2003, 424: 296–299

    Article  CAS  Google Scholar 

  21. Steel WH, Lau YY, Beildeck CL, Walker RA. J Phys Chem B, 2004, 108: 13370–13378

    Article  CAS  Google Scholar 

  22. Scatena LF, Brown MG, Richmond GL. Science, 2001, 292: 908–912

    Article  CAS  Google Scholar 

  23. Walker DS, Brown MG, McFearin CL, Richmond GL. J Phys Chem B, 2004, 108: 2111–2114

    Article  CAS  Google Scholar 

  24. Walker DS, Moore FG, Richmond GL. J Phys Chem C, 2007, 111: 6103–6112

    Article  CAS  Google Scholar 

  25. Ishizaka S, Habuchi S, Kim HB, Kitamura N. Anal Chem, 1999, 71: 3382–3389

    Article  CAS  Google Scholar 

  26. Ishizaka S, Kim HB, Kitamura N. Anal Chem, 2001, 73: 2421–2428

    Article  CAS  Google Scholar 

  27. Luo G, Malkova S, Yoon J, Schultz DG, Lin B, Meron M, Benjamin I, Vanysek P, Schlossman ML. Science, 2006, 311: 216–218

    Article  CAS  Google Scholar 

  28. Luo G, Malkova S, Pingali SV, Schultz DG, Lin B, Meron M, Graber TJ, Gebhardt J, Vanysek P, Schlossman ML. Faraday Disc, 2005, 129: 23–25

    Article  CAS  Google Scholar 

  29. Kakiuchi T, Senda M. BCSJ, 1983, 56: 1322–1326

    Article  CAS  Google Scholar 

  30. Girault HH, Schiffrin DJ, Smith BDV. J Electroanal Chem Interfacial Electrochem, 1982, 137: 207–217

    Article  CAS  Google Scholar 

  31. Wei C, Bard AJ, Mirkin MV. J Phys Chem, 1995, 99: 16033–16042

    Article  CAS  Google Scholar 

  32. Ji T, Liang Z, Zhu X, Wang L, Liu S, Shao Y. Chem Sci, 2011, 2: 1523–1529

    Article  CAS  Google Scholar 

  33. Hansma PK, Drake B, Marti O, Gould SA, Prater CB. Science, 1989, 243: 641–643

    Article  CAS  Google Scholar 

  34. Böcker M, Muschter S, Schmitt EK, Steinem C, Schäffer TE. Langmuir, 2009, 25: 3022–3028

    Article  Google Scholar 

  35. Shevchuk AI, Frolenkov GI, Sánchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE. Angew Chem Int Ed, 2006, 45: 2212–2216

    Article  CAS  Google Scholar 

  36. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ. BioPhys J, 1997, 73: 653–658

    Article  CAS  Google Scholar 

  37. Girault HHJ, Schiffrin DJ. Electrochim Acta, 1986, 31: 1341–1342

    Article  CAS  Google Scholar 

  38. Quezada GR, Rozas RE, Toledo PG. J Phys Chem C, 2017, 121: 25271–25282

    Article  CAS  Google Scholar 

  39. Wei C, Bard AJ, Feldberg SW. Anal Chem, 1997, 69: 4627–4633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21575006, 21335001) and the National Key Research and Development Program of China (2016YFA0201300)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhua Shao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Chen, Y., Dong, Y. et al. Probing non-polarizable liquid/liquid interfaces using scanning ion conductance microscopy. Sci. China Chem. 63, 411–418 (2020). https://doi.org/10.1007/s11426-019-9661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9661-9

Keywords

Navigation