Skip to main content
Log in

Hesperetin Solubility in Aqueous Co-solvent Mixtures of Methanol and Ethanol: Solute Descriptors, Solvent Effect and Preferential Solvation Analysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubility data for hesperetin in pure solvents and alcohol-rich regions of aqueous mixtures of methanol and ethanol were used to derive the solute descriptors for solubility prediction of hesperetin by using the Abraham solvation parameter model. Solubility data in aqueous mixtures of methanol and ethanol were analyzed by the linear solvation energy relationships approach to provide detailed insight into the solvent effect. In this regard, energy terms for solute–solvent and solvent–solvent interactions were defined in terms of dipolarity–polarizability, hydrogen bond basicity, hydrogen bond acidity and Hildebrand solvent parameter. Results indicate that the main contribution was from solvent–solvent interactions represented by the cavity term. Preferential solvation analysis was performed with the help of inverse Kirkwood–Buff integrals approach. Local composition and preferential solvation parameter were calculated as a function of mole fraction of methanol and ethanol. Results show that hesperetin is preferentially surrounded by water in water-rich regions, whereas methanol or ethanol are preferred in other compositions. This observation was discussed in terms of the solute hydrophobic hydration and specific hydrogen bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409 × (96)00423-1. The article was originally published. Adv. Drug Deliv. Rev. 23(1), 3–26 (1997). https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  Google Scholar 

  2. A. Avdeef: Absorption and Drug Development: Solubility, Permeability, and Charge State. Wiley, Hoboken (2012)

    Book  Google Scholar 

  3. M.H. Abraham: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22(2), 73–83 (1993). https://doi.org/10.1039/CS9932200073

    Article  CAS  Google Scholar 

  4. M.H. Abraham, R.E. Smith, R. Luchtefeld, A.J. Boorem, R. Luo, W.E. Acree: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99(3), 1500–1515 (2010). https://doi.org/10.1002/jps.21922

    Article  CAS  PubMed  Google Scholar 

  5. M.H. Abraham, W.E. Acree: Descriptors for pentane-2,4-dione and its derivatives. J. Solution Chem. 46(8), 1625–1638 (2017). https://doi.org/10.1007/s10953-017-0667-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E. Qian, A. Gupta, R. Neal, G. Lee, M. Che, L. Wang, D. Yue, S. Wang, K. Liu, A. Zhang, W.E. Acree, M.H. Abraham: Abraham model correlations for describing solute transfer into 4-methyl-2-pentanol from both water and the gas phase. J. Mol. Liq. 278, 335–341 (2019). https://doi.org/10.1016/j.molliq.2019.01.061

    Article  CAS  Google Scholar 

  7. W.E. Acree, M. Che, G. Lee, M.H. Abraham: Calculation of the Abraham model solute descriptors for the pharmaceutical compound acipimox based on experimental solubility data. Phys. Chem. Liq. 57(3), 382–387 (2019). https://doi.org/10.1080/00319104.2018.1467908

    Article  CAS  Google Scholar 

  8. M.H. Abraham, W.E. Acree: Descriptors for the α,ω-dicarboxylic acids from oxalic acid to sebacic acid. Fluid Phase Equilib. 467, 17–24 (2018). https://doi.org/10.1016/j.fluid.2018.03.017

    Article  CAS  Google Scholar 

  9. W.E. Acree, M.Y. Horton, E. Higgins, M.H. Abraham: Abraham model linear free energy relationships as a means of extending solubility studies to include the estimation of solute solubilities in additional organic solvents. J. Chem. Thermodyn. 102, 392–397 (2016). https://doi.org/10.1016/j.jct.2016.07.028

    Article  CAS  Google Scholar 

  10. H. Parhiz, A. Roohbakhsh, F. Soltani, R. Rezaee, M. Iranshahi: Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res. 29(3), 323–331 (2015). https://doi.org/10.1002/ptr.5256

    Article  CAS  PubMed  Google Scholar 

  11. I. Erlund: Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24(10), 851–874 (2004). https://doi.org/10.1016/j.nutres.2004.07.005

    Article  CAS  Google Scholar 

  12. J. Cho: Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res. 29(8), 699 (2006). https://doi.org/10.1007/bf02968255

    Article  CAS  PubMed  Google Scholar 

  13. J.M.P.F. de Oliveira, C. Santos, E. Fernandes: Therapeutic potential of hesperidin and its aglycone hesperetin: cell cycle regulation and apoptosis induction in cancer models. Phytomedicine (2019). https://doi.org/10.1016/j.phymed.2019.152887

    Article  PubMed  Google Scholar 

  14. M. Iranshahi, R. Rezaee, H. Parhiz, A. Roohbakhsh, F. Soltani: Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sci. 137, 125–132 (2015). https://doi.org/10.1016/j.lfs.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  15. A. Roohbakhsh, H. Parhiz, F. Soltani, R. Rezaee, M. Iranshahi: Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin: a mini-review. Life Sci. 113(1), 1–6 (2014). https://doi.org/10.1016/j.lfs.2014.07.029

    Article  CAS  PubMed  Google Scholar 

  16. O. Ferreira, B. Schröder, S.P. Pinho: Solubility of hesperetin in mixed solvents. J. Chem. Eng. Data 58(9), 2616–2621 (2013). https://doi.org/10.1021/je400513s

    Article  CAS  Google Scholar 

  17. O. Ferreira, S.P. Pinho: Solubility of flavonoids in pure solvents. Ind. Eng. Chem. Res. 51(18), 6586–6590 (2012). https://doi.org/10.1021/ie300211e

    Article  CAS  Google Scholar 

  18. H. Zhang, M. Wang, L. Chen, Y. Liu, H. Liu, H. Huo, L. Sun, X. Ren, Y. Deng, A. Qi: Structure-solubility relationships and thermodynamic aspects of solubility of some flavonoids in the solvents modeling biological media. J. Mol. Liq. 225, 439–445 (2017). https://doi.org/10.1016/j.molliq.2016.11.036

    Article  CAS  Google Scholar 

  19. L. Liu, J. Chen: Solubility of hesperetin in various solvents from (288.2 to 323.2) K. J. Chem. Eng. Data 53(7), 1649–1650 (2008). https://doi.org/10.1021/je800078j

    Article  CAS  Google Scholar 

  20. S. Tommasini, M.L. Calabrò, R. Stancanelli, P. Donato, C. Costa, S. Catania, V. Villari, P. Ficarra, R. Ficarra: The inclusion complexes of hesperetin and its 7-rhamnoglucoside with (2-hydroxypropyl)-β-cyclodextrin. J. Pharm. Biomed. Anal. 39(3), 572–580 (2005). https://doi.org/10.1016/j.jpba.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  21. R. Srirangam, S. Majumdar: Passive asymmetric transport of hesperetin across isolated rabbit cornea. Int. J. Pharm. 394(1), 60–67 (2010). https://doi.org/10.1016/j.ijpharm.2010.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.U.: UFZ-LSER database v 3.2. Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. http://www.ufz.de/lserd (2017). Accessed 18 Aug 2019

  23. M.H. Abraham, W.E. Acree: On the solubility of quercetin. J. Mol. Liq. 197, 157–159 (2014). https://doi.org/10.1016/j.molliq.2014.05.006

    Article  CAS  Google Scholar 

  24. R.W. Taft, J.L.M. Abboud, M.J. Kamlet, M.H. Abraham: Linear solvation energy relations. J. Solution Chem. 14(3), 153–186 (1985). https://doi.org/10.1007/bf00647061

    Article  CAS  Google Scholar 

  25. X. Feng, A. Farajtabar, H. Lin, G. Chen, Y. He, X. Li, H. Zhao: Equilibrium solubility, solvent effect and preferential solvation of chlorhexidine in aqueous co-solvent solutions of (methanol, ethanol, N,N-dimethylformamide and 1,4-dioxane). J. Chem. Thermodyn. 129, 148–158 (2019). https://doi.org/10.1016/j.jct.2018.09.008

    Article  CAS  Google Scholar 

  26. M. Zheng, A. Farajtabar, H. Zhao: Solute-solvent and solvent-solvent interactions and preferential solvation of hesperidin in aqueous cosolvent mixtures of ethanol, isopropanol, propylene glycol and n-propanol. J. Mol. Liq. 264, 285–291 (2018). https://doi.org/10.1016/j.molliq.2018.05.057

    Article  CAS  Google Scholar 

  27. Q. He, M. Zheng, A. Farajtabar, H. Zhao: Thermodynamic modelling for solubility of 3-methyl-2-nitrobenzoic acid in nine organic solvents from T (283.15–318.15 K) and dissolution properties. J. Solution Chem. 47(7), 1224–1245 (2018). https://doi.org/10.1007/s10953-018-0788-y

    Article  CAS  Google Scholar 

  28. Y. Marcus: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140(1), 61–67 (2008). https://doi.org/10.1016/j.molliq.2008.01.005

    Article  CAS  Google Scholar 

  29. Y. Li, A. Farajtabar, Z. Hongkun: Preferential solvation of vitamin C in binary solvent mixtures formed by methanol, ethanol, n-propanol, isopropanol and water. J. Solution Chem. 48(2), 200–211 (2019). https://doi.org/10.1007/s10953-019-00857-3

    Article  CAS  Google Scholar 

  30. Y. Bao, A. Farajtabar, M. Zheng, H. Zhao, Y. Li: Thermodynamic solubility modelling, solvent effect and preferential solvation of naftopidil in aqueous co-solvent solutions of (n-propanol, ethanol, isopropanol and dimethyl sulfoxide). J. Chem. Thermodyn. 133, 161–169 (2019). https://doi.org/10.1016/j.jct.2019.02.016

    Article  CAS  Google Scholar 

  31. H.F. Tooski, M. Jabbari, A. Farajtabar: Solubility and preferential solvation of the flavonoid naringenin in some aqueous/organic solvent mixtures. J. Solution Chem. 45(12), 1701–1714 (2016). https://doi.org/10.1007/s10953-016-0526-2

    Article  CAS  Google Scholar 

  32. F.H. Pirhayati, S. Mirzaeei, E. Rahimpour, G. Mohammadi, F. Martinez, S. Taghe, A. Jouyban: Experimental and computational approaches for measuring minoxidil solubility in propylene glycol + water mixtures at different temperatures. J. Mol. Liq. 280, 334–340 (2019). https://doi.org/10.1016/j.molliq.2019.01.120

    Article  CAS  Google Scholar 

  33. Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree: Solubility and preferential solvation of caffeine and theophylline in {{{{methanol + water}}}} mixtures at 298.15 K. J. Solution Chem. 46(8), 1605–1624 (2017). https://doi.org/10.1007/s10953-017-0666-z

    Article  CAS  Google Scholar 

  34. Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree: Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J. Solution Chem. 45(10), 1479–1503 (2016). https://doi.org/10.1007/s10953-016-0513-7

    Article  CAS  Google Scholar 

  35. A.R. Holguín, D.R. Delgado, F. Martínez, Y. Marcus: Solution thermodynamics and preferential solvation of meloxicam in propylene glycol + water mixtures. J. Solution Chem. 40(12), 1987–1999 (2011). https://doi.org/10.1007/s10953-011-9769-0

    Article  CAS  Google Scholar 

  36. Z. Li, L. He, X. Yu: Solubility measurements and the dissolution behavior of malonic acid in binary solvent mixtures of (2-propanol + ethyl acetate) by IKBI calculations. J. Solution Chem. 48(4), 427–444 (2019). https://doi.org/10.1007/s10953-019-00853-7

    Article  CAS  Google Scholar 

  37. M.H. Abraham, J.C. McGowan: The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23(4), 243–246 (1987). https://doi.org/10.1007/bf02311772

    Article  CAS  Google Scholar 

  38. M.H. Abraham, A. Ibrahim, A.M. Zissimos: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037(1), 29–47 (2004). https://doi.org/10.1016/j.chroma.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  39. ACD/ChemSketch. In: Advanced Chemistry Development, Inc., Toronto, ON, Canada (2019)

  40. C. Comuzzi, P. Polese, A. Melchior, R. Portanova, M. Tolazzi: SOLVERSTAT: a new utility for multipurpose analysis. An application to the investigation of dioxygenated Co(II) complex formation in dimethylsulfoxide solution. Talanta 59(1), 67–80 (2003). https://doi.org/10.1016/S0039-9140(02)00457-5

    Article  CAS  PubMed  Google Scholar 

  41. W.L. Whaley, E.M. Okoso-amaa, C.L. Womack, A. Vladimirova, L.B. Rogers, M.J. Risher, M.H. Abraham: Summation solute hydrogen bonding acidity values for hydroxyl substituted flavones determined by NMR spectroscopy. Nat. Prod. Commun. 8(1), 85–98 (2013). https://doi.org/10.1177/1934578x1300800121

    Article  CAS  PubMed  Google Scholar 

  42. M.H. Abraham, W.E. Acree Jr, C.E. Earp, A. Vladimirova, W.L. Whaley: Studies on the hydrogen bond acidity, and other descriptors and properties for hydroxyflavones and hydroxyisoflavones. J. Mol. Liq. 208, 363–372 (2015). https://doi.org/10.1016/j.molliq.2015.05.011

    Article  CAS  Google Scholar 

  43. M.H. Abraham, R.J. Abraham, J. Byrne, L. Griffiths: NMR method for the determination of solute hydrogen bond acidity. J. Org. Chem. 71(9), 3389–3394 (2006). https://doi.org/10.1021/jo052631n

    Article  CAS  PubMed  Google Scholar 

  44. J.R. Torres-Lapasió, M.C. García-Alvarez-Coque, M. Rosés, E. Bosch, A.M. Zissimos, M.H. Abraham: Analysis of a solute polarity parameter in reversed-phase liquid chromatography on a linear solvation relationship basis. Anal. Chim. Acta 515(1), 209–227 (2004). https://doi.org/10.1016/j.aca.2004.01.056

    Article  CAS  Google Scholar 

  45. Y. Marcus: The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. J. Chem. Soc. Perkin Trans. 2, 1751–1758 (1994). https://doi.org/10.1039/P29940001751

    Article  Google Scholar 

  46. C.M. Hansen: Hansen Solubility Parameters a User’s Handbook. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  47. A.J. Easteal, L.A. Woolf: Vm, T, x) measurements for [(1 – x)H2O + xCH3OH] in the range 278 to 323 K and 0.1 to 280 MPa I. Experimental results, isothermal compressibilities, thermal expansivities, and partial molar volumes. J. Chem. Thermodyn. 17(1), 49–62 (1985). https://doi.org/10.1016/0021-9614(85)90031-X

    Article  CAS  Google Scholar 

  48. D. Pečar, V. Doleček: Volumetric properties of ethanol–water mixtures under high temperatures and pressures. Fluid Phase Equilib. 230(1), 36–44 (2005). https://doi.org/10.1016/j.fluid.2004.11.019

    Article  CAS  Google Scholar 

  49. Y. Marcus: Solvent Mixtures: Properties and Selective Solvation. Marcel Dekker, New York (2002)

    Google Scholar 

  50. S. Feizi, M. Jabbari, A. Farajtabar: A systematic study on solubility and solvation of bioactive compound chrysin in some water + cosolvent mixtures. J. Mol. Liq. 220, 478–483 (2016). https://doi.org/10.1016/j.molliq.2016.05.019

    Article  CAS  Google Scholar 

  51. X. Li, S. Feng, A. Farajtabar, N. Zhang, G. Chen, H. Zhao: Solubility modelling, solvent effect and preferential solvation of 6-chloropurine in several aqueous co-solvent mixtures between 283.15 K and 328.15 K. J. Chem. Thermodyn. 127, 106–116 (2018). https://doi.org/10.1016/j.jct.2018.07.028

    Article  CAS  Google Scholar 

  52. X. Li, Y. Liu, Y. Cao, Y. Cong, A. Farajtabar, H. Zhao: Solubility modeling, solvent effect, and preferential solvation of thiamphenicol in cosolvent mixtures of methanol, ethanol, N,N-dimethylformamide, and 1,4-dioxane with water. J. Chem. Eng. Data 63(6), 2219–2227 (2018). https://doi.org/10.1021/acs.jced.8b00179

    Article  CAS  Google Scholar 

  53. Q. He, M. Zheng, A. Farajtabar, H. Zhao: Solubility and dissolution thermodynamics of cefmetazole acid in four neat solvents and preferential solvation in co-solvent mixtures of (methanol, ethanol or isopropanol) + water. J. Solution Chem. 47(5), 838–854 (2018). https://doi.org/10.1007/s10953-018-0758-4

    Article  CAS  Google Scholar 

  54. D.R. Delgado, F. Martínez: Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq. 193, 152–159 (2014). https://doi.org/10.1016/j.molliq.2013.12.021

    Article  CAS  Google Scholar 

  55. A. Hvidt: Interactions of water with nonpolar solutes. Annu. Rev. Biophys. Bioeng. 12(1), 1–20 (1983). https://doi.org/10.1146/annurev.bb.12.060183.000245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farajtabar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, J., Saadatjou, N. & Farajtabar, A. Hesperetin Solubility in Aqueous Co-solvent Mixtures of Methanol and Ethanol: Solute Descriptors, Solvent Effect and Preferential Solvation Analysis. J Solution Chem 49, 179–194 (2020). https://doi.org/10.1007/s10953-020-00948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00948-6

Keywords

Navigation