A Sea Surface Temperature data record (2004–2012) from Meteosat Second Generation satellites

https://doi.org/10.1016/j.rse.2020.111687Get rights and content
Under a Creative Commons license
open access

Highlights

  • Development of a Meteosat Second Generation sea surface temperature data record

  • Extensive validation against drifting buoy, Argo float and moored buoy measurements

  • Characterization of the diurnal variability of sea surface temperature

Abstract

The Ocean and Sea-Ice Satellite Application Facility (OSI-SAF) of the EUropean Organisation for the Exploitation of METeorological Satellites (EUMETSAT) has performed a reprocessing of Sea Surface Temperature (SST) from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) archive (2004–2012).

The retrieval method consists of a non-linear split-window algorithm and an algorithm correction relying on simulations of infrared brightness temperatures performed using atmospheric profiles of water vapour and temperature from a Numerical Weather Prediction model, and a radiative transfer model. The cloud mask used is the Climate SAF reprocessing of the MSG/SEVIRI archive which is consistent over the period considered. Atmospheric Saharan dust has a strong impact on the retrieved SST in the Atlantic and Mediterranean regions, they are taken into consideration through the computation of the Saharan Dust Index (SDI) which is then used to determine an empirical correction applied to SST.

The reprocessing has benefited from the experience of the OSI SAF team in operational near real time processing of MSG/SEVIRI data, and the methods have been improved to provide a higher quality SST. The MSG/SEVIRI SST reprocessing dataset consists of hourly level 3 composites of sub-skin temperature projected onto a regular 0.05° grid over the region delimited by 60N,60S and 60W,60E. It has been thoroughly validated against drifting buoys and moored buoys measurements.

Results of this validation have shown that the reprocessed data record is of significantly better quality than the OSI SAF operational processing (for instance the day-time robust standard deviation is 0.45 K for the operational processing and 0.35 K for the reprocessed dataset). The data record has been used to characterize the diurnal variability of SST over large temporal and spatial scales.

Keywords

Sea Surface Temperature
Meteosat Second Generation
Reprocessing

Cited by (0)

1

Present address: SHOM -13 Rue de Châtellier, 29200 Brest, France.