Stem Cell Reports
Volume 14, Issue 3, 10 March 2020, Pages 390-405
Journal home page for Stem Cell Reports

Article
Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins

https://doi.org/10.1016/j.stemcr.2020.01.010Get rights and content
Under a Creative Commons license
open access

Highlights

  • Axonal trafficking is disrupted in MNs with hexanucleotide repeat expansion (HRE)

  • C9ORF72 knockout (KO) exacerbated phenotypes in MNs with HRE

  • C9ORF72 KO reduced heat shock proteins in MNs with HRE

  • Inhibition of heat shock proteins exacerbated ALS phenotypes in MNs with HRE

Summary

In amyotrophic lateral sclerosis (ALS) motor neurons (MNs) undergo dying-back, where the distal axon degenerates before the soma. The hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS, but the mechanism of pathogenesis is largely unknown with both gain- and loss-of-function mechanisms being proposed. To better understand C9ORF72-ALS pathogenesis, we generated isogenic induced pluripotent stem cells. MNs with HRE in C9ORF72 showed decreased axonal trafficking compared with gene corrected MNs. However, knocking out C9ORF72 did not recapitulate these changes in MNs from healthy controls, suggesting a gain-of-function mechanism. In contrast, knocking out C9ORF72 in MNs with HRE exacerbated axonal trafficking defects and increased apoptosis as well as decreased levels of HSP70 and HSP40, and inhibition of HSPs exacerbated ALS phenotypes in MNs with HRE. Therefore, we propose that the HRE in C9ORF72 induces ALS pathogenesis via a combination of gain- and loss-of-function mechanisms.

Keywords

C9ORF72
induced pluripotent stem cells
amyotrophic lateral sclerosis
gene editing
disease modeling
axonal trafficking
heat shock proteins
HSP70
HSP40

Cited by (0)

11

Co-first author

12

Co-senior author