Skip to main content
Log in

Type I Collagen-chitosan Membranes Crosslinked Chemically with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide Hydrochloride for Guided Bone Regeneration: A Comparative Study

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, chemical crosslinking with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) was studied in type I collagen-chitosan (Col I-CS) membranes for their use in guided bone regeneration (GBR). The membranes were prepared in a wide range of Col I-CS proportions, produced in the form of films by the solvent evaporation technique and crosslinked with EDC. The membranes presented a rough surface that is adequate for cell adhesion and a compact cross-section to prevent some infiltration of unwanted cell tissues, according to scanning electron microscopy. The physicochemical characterization (thermogravimetric analysis, differential scanning calorimetry, uniaxial tensile test and in vitro degradation) showed that the crosslinked membranes are more resistant to dehydration, tensile strength and enzymatic digestion. The biological assays (adhesion, viability and morphology of cells) using human fetal osteoblasts (hFOB) indicated that the crosslinked membranes are not cytotoxic. Therefore, the chemical crosslinking with EDC improves the physicochemical properties of the membranes without affecting their biocompatibility, indicating that this type of membranes is a potential alternative to be used in GBR. In addition, this study also allowed to know the best type of crosslinked membranes, as a proposal for its application in GBR strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. González Fernández, G. Olmos Sanz, C. López Niñoles, D. Calzavara Mantovani, and G. Cabello Domínguez, Periodoncia y Osteointegración, 15, 295 (2005).

    Google Scholar 

  2. D. González Padilla, A. García-Perla García, J. L. Gutiérrez Pérez, D. Torres Lagares, G. Castillo Dali, M. Salido Peracaula, J. Vilches Troya, J. I. Vilches Pérez, A. Terriza Fernández, Á. Barranco Quero, F. Yubero Valencia, A. Díaz Cuenca, and A. Rodríguez González-Elipe, Spain Patent, ES 2497240 B1 (2014).

    Google Scholar 

  3. N. Shanmugasundaram, P. Ravichandran, P. Neelakanta Reddy, N. Ramamurty, S. Pal, and K. Panduranga Rao, Biomaterials, 22, 1943 (2001).

    Article  CAS  Google Scholar 

  4. S. P. Zhong, Y. Z. Zhang, and C. T. Lim, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2, 510 (2010).

    CAS  PubMed  Google Scholar 

  5. D. L. Nelson and M. M. Cox, “Lehninger: Principles of Biochemistry”, W. H. Freeman, New York, 2017.

  6. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, J. Wilson, and T. Hunt, “Molecular Biology of the Cell”, Garland Science/Taylor & Francis, New York, 2015.

    Google Scholar 

  7. J. A. M. Ramshaw, Y. Y. Peng, V. Glattauer, and J. A. Werkmeister, J. Mater. Sci.: Mater. Med., 20, 3 (2009).

    Google Scholar 

  8. P. Fratzl, “Collagen”, Springer US, Boston, MA, 2008.

    Book  Google Scholar 

  9. C.-M. Han, L.-P. Zhang, J.-Z. Sun, H.-F. Shi, J. Zhou, and C.-Y. Gao, J. Zhejiang University Sci. B, 11, 524 (2010).

    Article  CAS  Google Scholar 

  10. S. P. Miranda Castro and E. G. Lizárraga Paulín in “The Complex World of Polysaccharides” (D. N. Karunaratne Ed.), pp.3–46, InTech, 2012.

  11. C. Lárez Velásquez, Revista Iberoamericana de Polímeros, 4, 91 (2003).

    Google Scholar 

  12. K.-Y. Chen, W.-J. Liao, S.-M. Kuo, F.-J. Tsai, Y.-S. Chen, C.-Y. Huang, and C.-H. Yao, Biomacromolecules, 10, 1642 (2009).

    Article  CAS  Google Scholar 

  13. K. Madhavan, D. Belchenko, A. Motta, and W. Tan, Acta Biomaterialia, 6, 1413 (2010).

    Article  CAS  Google Scholar 

  14. J. Hua, Z. Li, W. Xia, N. Yang, J. Gong, J. Zhang, and C. Qiao, Mater. Sci. Eng.: C, 61, 879 (2016).

    Article  CAS  Google Scholar 

  15. W. Li, Y. Long, Y. Liu, K. Long, S. Liu, Z. Wang, Y. Wang, and L. Ren, J. Biomater. Sci. Polym. Ed., 25, 1962 (2014).

    Article  CAS  Google Scholar 

  16. X. H. Wang, D. P. Li, W. J. Wang, Q. L. Feng, F. Z. Cui, Y. X. Xu, X. H. Song, and M. van der Werf, Biomaterials, 24, 3213 (2003).

    Article  CAS  Google Scholar 

  17. E. J. Miller and R. Kent Rhodes in “Methods in Enzymology” (L. W. Cunningham and D. W. Frederiksen Eds.), pp.33–64, Academic Press, 1982.

  18. J. F. Robyt and B. J. White, “Biochemical Techniques: Theory and Practice”, Waveland, Illinois, 1987.

    Google Scholar 

  19. J. F. Woessner, Arch. Biochem. Biophys., 93, 440 (1961).

    Article  CAS  Google Scholar 

  20. S. P. Miranda Castro and A. V. Lara Sagahón, Mexico Patent, MX 293022 B (2000).

  21. E. S. de Alvarenga in “Biotechnology of Biopolymers” (M. Elnashar Ed.), pp.91–108, InTech, 2011.

  22. M. R. Kasaai, Carbohydr. Polym., 68, 477 (2007).

    Article  CAS  Google Scholar 

  23. N. Rivera, S. E. Romero, Á. Menchaca, A. Zepeda, L. E. García, G. Salas, L. Romero, and F. Malagón, Parasitology Research, 112, 1021 (2013).

    Article  Google Scholar 

  24. A. A. Altamirano Valencia, N. Vargas Becerril, F. C. Vázquez Vázquez, T. Vargas Koudriavtsev, J. J. Montesinos Montesinos, E. Alfaro Mayorga, and M. A. Álvarez Pérez, Odovtos-International Journal of Dental Sciences, 18, 39 (2016).

    Google Scholar 

  25. Sigma-Aldrich, “Cell Counting Kit-8”, Available at https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/6/96992dat.pdf (Accessed May 24, 2019).

  26. S. Nalinanon, S. Benjakul, W. Visessanguan, and H. Kishimura, Food Chemistry, 104, 593 (2007).

    Article  CAS  Google Scholar 

  27. C. Ungureanu, D. Ionita, E. Berteanu, L. Tcacenco, A. Zuav, and I. Demetrescu, J. Braz. Chem. Soc., 26, 458 (2015).

    CAS  Google Scholar 

  28. N. E. Suyatma, A. Copinet, E. Legin-Copinet, F. Fricoteaux, and V. Coma, J. Polym. Environ., 19, 166 (2011).

    Article  CAS  Google Scholar 

  29. C. Tangsadthakun, S. Kanokpanont, N. Sanchavanakit, T. Banaprasert, and S. Damrongsakkul, Journal of Metals, Materials and Minerals, 16, 37 (2006).

    CAS  Google Scholar 

  30. F. Zhang, C. He, L. Cao, W. Feng, H. Wang, X. Mo, and J. Wang, Int. J. Biol. Macromol., 48, 474 (2011).

    Article  CAS  Google Scholar 

  31. V. Shabafrooz, M. Mozafari, G. A. Köhler, S. Assefa, D. Vashaee, and L. Tayebi, J. Biomed. Mater. Res. Part A, 102, 3130 (2014).

    Article  Google Scholar 

  32. T. Maver, U. Maver, K. S. Kleinschek, I. M. Rašcan, and D. M. Smrke, Wiener Klinische Wochenschrift, 127, 187 (2015).

    Article  CAS  Google Scholar 

  33. Y. Liu, N. E. Vrana, P. A. Cahill, and G. B. McGuinness, J. Biomed. Mater. Res.-Part B Appl. Biomater., 90B, 492 (2009).

    Article  CAS  Google Scholar 

  34. P. Jithendra, A. M. Rajam, T. Kalaivani, A. B. Mandal, and C. Rose, ACS Appl. Mater. Interfaces, 5, 7291 (2013).

    Article  CAS  Google Scholar 

  35. K. S. Anseth, C. N. Bowman, and L. Brannon-Peppas, Biomaterials, 17, 1647 (1996).

    Article  CAS  Google Scholar 

  36. O. Jeon, S. J. Song, K.-J. Lee, M. H. Park, S.-H. Lee, S. K. Hahn, S. Kim, and B.-S. Kim, Carbohydr. Polym., 70, 251 (2007).

    Article  CAS  Google Scholar 

  37. M. N. Collins and C. Birkinshaw, Carbohydr. Polym., 92, 1262 (2013).

    Article  CAS  Google Scholar 

  38. F. J. O’Brien, Materials Today, 14, 88 (2011).

    Article  Google Scholar 

  39. J. Wang, L. Wang, Z. Zhou, H. Lai, P. Xu, L. Liao, and J. Wei, Polymers, 8, 115 (2016).

    Article  Google Scholar 

  40. J. Brouwer, T. van Leeuwen-Herberts, and M. O.-V. de Ruit, Clinica Chimica Acta, 142, 21 (1984).

    Article  CAS  Google Scholar 

  41. B. Porstmann, K. Jung, H. Schmechta, U. Evers, M. Pergande, T. Porstmann, H.-J. Kramm, and H. Krause, Clinical Biochemistry, 22, 349 (1989).

    Article  CAS  Google Scholar 

  42. W. Li, R. Guo, Y. Lan, Y. Zhang, W. Xue, and Y. Zhang, J. Biomed. Mater. Res. Part A, 102, 1131 (2014).

    Article  Google Scholar 

  43. Z. He and L. Xiong, J. Macromol. Sci., Part B, 51, 1705 (2012).

    Article  CAS  Google Scholar 

  44. H. S. Mansur, E. de S. Costa, A. A. P. Mansur, and E. F. Barbosa-Stancioli, Mater. Sci. Eng.: C, 29, 1574 (2009).

    Article  CAS  Google Scholar 

  45. R. Narayan, “Biomedical Materials”, Springer US, Boston, MA, 2009.

    Book  Google Scholar 

Download references

Acknowledgments

To CONACyT for the scholarship granted with No. 418423 and to DGAPA-UNAM for the financial support provided through the PAPIIT IT100114, IT100117 and IT203618 projects. We thank to Nayeli Rodríguez Fuentes, Karla Eriseth Reyes Morales, José Ocotlán Flores Flores, Armando Zepeda Rodríguez, Francisco Pasos Nájera and Carlos Flores Morales for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. L. Hidalgo-Vicelis, S. P. Miranda-Castro or M. C. Piña-Barba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo-Vicelis, J.L., Alvarez-Perez, M.A., Miranda-Castro, S.P. et al. Type I Collagen-chitosan Membranes Crosslinked Chemically with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide Hydrochloride for Guided Bone Regeneration: A Comparative Study. Fibers Polym 21, 262–272 (2020). https://doi.org/10.1007/s12221-020-9561-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9561-0

Keywords

Navigation