Skip to main content
Log in

Effect of Hybrid Reinforcement on the Mechanical Properties of Vinyl Ester Green Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The present article highlights the development of hybrid-fiber-reinforced composites using a vacuum-assisted resin transfer molding technique on low-cost flax fibers, carbon fiber, glass fibers and a vinyl ester resin system. Flax fibers are introduced to modulate mechanical properties, green credentials, cost, and the weight of carbon/glass/vinyl ester composites. The hybridization effect of flax, carbon, and glass fibers on mechanical properties, including tensile and flexural strengths, flexural modulus, impact strength, interlaminar shear strength, and damping is evaluated, which is also observed by SEM. The dynamic mechanical analysis was carried out for the composites with a three-point bending mode within a frequency range of 0 to 100 Hz. The results of the experiment reveal that hybrid composites with flax fabric and glass fabric had the highest flexural strength (727.8 MPa) and impact strength (0.171 J/mm2) compared with other composites. The dynamic mechanical analysis also showed that the highest value of Tan δ (0.0722) and damping ratio (2.75 %) were obtained compared with those of other composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Fragassa, A. Pavlovic, and C. Santulli, Compos. Part B-Eng., 137, 247 (2018).

    Article  CAS  Google Scholar 

  2. B. B. Yin and L. W. Zhang, Eng. Fract. Mech., 211, 321 (2019).

    Article  CAS  Google Scholar 

  3. D.-W. Lee, B.-J. Park, S.-Y. Park, C.-H. Choi, and J.-I. Song, Compos. Struct., 189, 61 (2018).

    Article  Google Scholar 

  4. G. Nam, J. Kim, and J. I. Song, Polym. Compos., 40, E1504 (2019).

    Article  Google Scholar 

  5. D.-W. Lee and J.-I. Song, Compos. Part B-Eng., 164, 358 (2019).

    Article  CAS  Google Scholar 

  6. J. Fei, H.-K. Wang, J.-F. Huang, X.-R. Zeng, and W. Luo, Tribol. Int., 72, 179 (2014).

    Article  CAS  Google Scholar 

  7. J. Lancaster, J. Phys. D: Appl. Phys., 1, 549 (1968).

    Article  Google Scholar 

  8. R. Häsä and S. T. Pinho, J. Mech. Phys. Solids, 125, 53 (2019).

    Article  Google Scholar 

  9. Q. Wang, H. Zhou, M. Liu, X. Li, and Q. Hu, Optik, 178, 1035 (2019).

    Article  CAS  Google Scholar 

  10. M. N. Prabhakar, and J.-I. Song, Int. J. Biol. Macromol., 119, 1335 (2018).

    Article  Google Scholar 

  11. C. Baley, C. Goudenhooft, P. Perré, P. Lu, F. Pierre, and A. Bourmaud, Ind. Crops. Prod., 130, 25 (2019).

    Article  CAS  Google Scholar 

  12. M. N. Prabhakar, A. U. R. Shah, and J.-I. Song, Carbohydr. Polym., 168, 201 (2017).

    Article  CAS  Google Scholar 

  13. M. Haggui, A. El Mahi, Z. Jendli, A. Akrout, and M. Haddar, Appl. Acoust., 147, 100 (2019).

    Article  Google Scholar 

  14. C. Naga Kumar, M. N. Prabhakar, and J.-I. Song, Polym. Test., 73, 404 (2019).

    Article  CAS  Google Scholar 

  15. U. Kureemun, M. Ravandi, L. Q. N. Tran, W. S. Teo, T. E. Tay, and H. P. Lee, Compos. Part B-Eng., 134, 28 (2018).

    Article  CAS  Google Scholar 

  16. V. Fiorea, L. Calabrese, T. Scalici, P. Bruzzaniti, and A. Valenza, Polym. Test., 69, 310 (2018).

    Article  Google Scholar 

  17. H. A. Aisyah, M. T. Paridah, S. M. Sapuan, A. Khalina, O. B. Berkalp, M. S. Wahab, S. H. Lee, and N. Ramli, Preprints, 2019010264 (2019).

  18. K. Mayandi, N. Rajini, M. Manojprabhakar, S. Siengchin, and N. Ayrilmis, “1 — Recent Studies on Durability of Natural/synthetic Fiber Reinforced Hybrid Polymer Composites”, In Woodhead Publishing Series in Composites Science and Engineering, Durability and Life Prediction in Biocomposites, Fiber-Reinforced Composites, and Hybrid Composites, Wood Head Publishing, pp.1–13, 2019.

    Google Scholar 

  19. K. N. Koo and I. Lee, Am. Inst. Aeron. Astronaut. J., 31, 728 (1993).

    Article  Google Scholar 

  20. R. M. Crane and J. W. Gillespie Jr., Compos. Sci. Technol., 40, 355 (1991).

    Article  CAS  Google Scholar 

  21. S. O. Kim, D. G. Seong, M. K. Um, and J. H. Choi, Compos. Res., 28, 340 (2015).

    Article  Google Scholar 

  22. J.-H. Kim, D.-J. Kwon, P.-S. Shin, Y.-M. Beak, H.-S. Park, K. L. DeVries, and J.-M. Park, Compos. Part B-Eng., 148, 61 (2018).

    Article  CAS  Google Scholar 

  23. S. David, A. Olivier, B. Alain, D. Antoine Le, and B. Christophe, Polym. Test., 69, 91 (2018).

    Article  Google Scholar 

  24. M. Cao, Y. Zhao, B. H. Gu, B. Z. Sun, and T. E. Tay, Compos. Struct., 211, 175 (2019).

    Article  Google Scholar 

  25. D. Chensong, Compos. Part B-Eng., 98, 176 (2016).

    Article  Google Scholar 

  26. M. Rueppel, J. Rion, C. Dransfeld, C. Fischer, and K. Masania, Compos. Sci. Technol., 146, 1 (2017).

    Article  CAS  Google Scholar 

  27. G. Marie-joo Le, N. Roger, A. Fernyhough, and M. P. Staiger, Compos. Part A-Appl. Sci. Manuf., 67, 37 (2017).

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research The program, through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, grant number (2018R1A6A1A03024509 and 2019R1A2B5B03004980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-il Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CU., Song, Ji. Effect of Hybrid Reinforcement on the Mechanical Properties of Vinyl Ester Green Composites. Fibers Polym 21, 428–436 (2020). https://doi.org/10.1007/s12221-020-9632-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9632-2

Keywords

Navigation