Skip to main content
Log in

Common pitfalls in chemical actinometry

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Combining microflow chemistry and photoreaction technology has shown to be a viable option to intensify and significantly improve photochemical processes in terms of control and efficiency. Chemical actinometry allows to measure the actually incident photon flux in a specific reactor, but is not trivial to perform. Especially under flow conditions. Numerous errors can occur, not only in the experimental and analytical procedure, but also in the subsequent calculations before finally receiving the incident photon flux. Nevertheless, knowledge of this metric is of fundamental importance to determine the efficiency of photochemical reactor setups. Consequently, this work illustrates, comments and explains various possible pitfalls of chemical actinometry. To avoid adulterated results, a standard measurement and calculation procedure is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oelgemöller M (2012) . Chem Eng Technol 35(7):1144. https://doi.org/10.1002/ceat.201200009

    Article  CAS  Google Scholar 

  2. Gilmore K, Seeberger PH (2014) . Chem Rec 14(3):410. https://doi.org/10.1002/tcr.201402035

    Article  CAS  PubMed  Google Scholar 

  3. Oelgemöller M, Hoffmann N, Shvydkiv O (2014) . Aust J Chem 67(3):337. https://doi.org/10.1071/ch13591

    Article  Google Scholar 

  4. Krüger K, Lüdke V, Pettinger J, Ashton L, Bonnet L, Motti CA, Lex J, Oelgemöller M (2018) . Tetrahedron Lett 59(14):1427. https://doi.org/10.1016/j.tetlet.2018.02.074

    Article  CAS  Google Scholar 

  5. Radjagobalou R, Blanco JF, Dechy-Cabaret O, Oelgemöller M, Loubiére K (2018) . Chem Eng Proc - Process Intensification 130:214. https://doi.org/10.1016/j.cep.2018.05.015

    Article  CAS  Google Scholar 

  6. Gutierrez AC, Jamison TF (2012) . J Flow Chem 1(1):24. https://doi.org/10.1556/jfchem.2011.00004

    Article  CAS  Google Scholar 

  7. Williams JD, Otake Y, Coussanes G, Saridakis I, Maulide N, Kappe CO (2019) . Chem Photo Chem 3(5):229. https://doi.org/10.1002/cptc.201900017

    Article  CAS  PubMed  Google Scholar 

  8. Abdiaj I, Horn CR, Alcazar J (2018) . J Org Chem 84(8):4748. https://doi.org/10.1021/acs.joc.8b02358

    Article  CAS  PubMed  Google Scholar 

  9. Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) . Chem Rev 116(17):10276. https://doi.org/10.1021/acs.chemrev.5b00707

    Article  CAS  PubMed  Google Scholar 

  10. Politano F, Oksdath-Mansilla G (2018) . Org Proc Res &, Dev 22(9):1045. https://doi.org/10.1021/acs.oprd.8b00213

    Article  CAS  Google Scholar 

  11. Noël T (2017) . J Flow Chem 7(3–4):87. https://doi.org/10.1556/1846.2017.00022

    Article  CAS  Google Scholar 

  12. Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI (2014) . Chem Eur J 20(46):15226. https://doi.org/10.1002/chem.201404347

    Article  CAS  PubMed  Google Scholar 

  13. Cambié D, Zhao F, Hessel V, Debije MG, Noël T (2017) . React Chem Eng 2(4):561. https://doi.org/10.1039/c7re00077d

    Article  CAS  Google Scholar 

  14. Sender M, Ziegenbalg D (2017) . Chem Ing Tech 89(9):1159. https://doi.org/10.1002/cite.201600191

    Article  CAS  Google Scholar 

  15. Bowman WD, Demas JN (1976) . J Phys Chem 80(21):2434. https://doi.org/10.1021/j100562a025

    Article  CAS  Google Scholar 

  16. Radjagobalou R, Blanco JF, da Silva Freitas VD, Supplis C, Gros F, Dechy-Cabaret O, Loubière K (2019) . J Photochem Photobiol A 382:111934. https://doi.org/10.1016/j.jphotochem.2019.111934

    Article  CAS  Google Scholar 

  17. Taylor HA (1971) Analytical methods and techniques for actinometry. In: Dekker M (ed) Analytical Photochemistry and Photochemical Analysis: Solids, Solutions and Polymer

  18. Murov SL (1993) Handbook of Photochemistry, vol. Sect 13 (Marcel Dekker)

  19. Vincze L, Kemp TJ, Unwin PR (1999) . J Photochem Photobiol A 123(1-3):7. https://doi.org/10.1016/s1010-6030(99)00048-9

    Article  CAS  Google Scholar 

  20. Lehóczki T, Józsa É, Ösz K (2013) . J Photochem Photobiol A 251:63. https://doi.org/10.1016/j.jphotochem.2012.10.005

    Article  CAS  Google Scholar 

  21. Stookey LL (1970) . Anal Chem 42(7):779. https://doi.org/10.1021/ac60289a016

    Article  CAS  Google Scholar 

  22. Kirk AD, Namasivayam C (1983) . Anal Chem 55(14):2428. https://doi.org/10.1021/ac00264a053

    Article  CAS  Google Scholar 

  23. Demas JN, Bowman WD, Zalewski EF, Velapoldi RA (1981) . J Phys Chem 85(19):2766. https://doi.org/10.1021/j150619a015

    Article  CAS  Google Scholar 

  24. Goldstein S, Rabani J (2008) . J Photochem Photobiol A 193(1): 50. https://doi.org/10.1016/j.jphotochem.2007.06.006

    Article  CAS  Google Scholar 

  25. Sugimoto A, Fukuyama T, Sumino Y, Takagi M, Ryu I (2009) . Tetrahedron 65(8):1593. https://doi.org/10.1016/j.tet.2008.12.063

    Article  CAS  Google Scholar 

  26. Aida S, Terao K, Nishiyama Y, Kakiuchi K, Oelgemöller M (2012) . Tetrahedron Lett 53(42):5578. https://doi.org/10.1016/j.tetlet.2012.07.143

    Article  CAS  Google Scholar 

  27. Roibu A, Fransen S, Leblebici ME, Meir G, Gerven TV, Kuhn S (2018) . Sci Rep 8(1):5421. https://doi.org/10.1038/s41598-018-23735-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuhn HJ, Braslavsky SE, Schmidt R (2004) . Pure Appl Chem 76(12):2105. https://doi.org/10.1351/pac200476122105

    Article  CAS  Google Scholar 

  29. Aillet T, Loubière K, Dechy-Cabaret O, Prat L (2013) . Chem Eng Technol 64:38. https://doi.org/10.1016/j.cep.2012.10.017

    Article  CAS  Google Scholar 

  30. Aillet T, Loubière K, Dechy-Cabaret O, Prat L (2014) . Int J Chem React Eng 12(1):1. https://doi.org/10.1515/ijcre-2013-0121

    Article  CAS  Google Scholar 

  31. Rochatte V, Dahi G, Eskandari A, Dauchet J, Gros F, Roudet M, Cornet J (2017) . Chem Eng J 308:940. https://doi.org/10.1016/j.cej.2016.08.112

    Article  CAS  Google Scholar 

  32. Wriedt B, Kowalczyk D, Ziegenbalg D (2018) . Chem Photo Chem 2(10):913. https://doi.org/10.1002/cptc.201800106

    Article  CAS  Google Scholar 

  33. Reinfelds M, Hermanns V, Halbritter T, Wachtveitl J, Braun M, Slanina T, Heckel A (2019) . Chem Photo Chem 3(5):441

    CAS  Google Scholar 

  34. Hatchard CG, Parker CA (1956) . Proc Roy Soc A 235(1203):518. https://doi.org/10.1098/rspa.1956.0102

    Article  CAS  Google Scholar 

  35. Valkai L, Marton A, Horváth AK (2019) J Photochem. Photobiol., A p 112021. https://doi.org/10.1016/j.jphotochem.2019.112021

    Article  Google Scholar 

  36. Wegner EE, Adamson AW (1966) . J Am Chem Soc 88(3):394. https://doi.org/10.1021/ja00955a003

    Article  CAS  Google Scholar 

  37. Peschl ultraviolet: Emission spectra mercury vapor lamp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Ziegenbalg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wriedt, B., Ziegenbalg, D. Common pitfalls in chemical actinometry. J Flow Chem 10, 295–306 (2020). https://doi.org/10.1007/s41981-019-00072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00072-7

Keywords

Navigation