Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling

Abstract

Introduction

The omic approach can help identify a signature that can be potentially used as biomarkers in babies with congenital diaphragmatic hernia (CDH).

Objectives

To find a specific microRNA (miR) and metabolic fingerprint of the tracheal aspirates (TA) of CDH patients. We conducted a genetic analysis from blood samples.

Methods

TA samples collected in the first 48 h of life in patients with CDH, compared with age-matched controls. Metabolomics done by a mass spectroscopy-based assay. Genomics done using chromosomal microarray analysis.

Results

CDH (n = 17) and 16 control neonates enrolled. miR-16, miR-17, miR-18, miR-19b, and miR-20a had an increased expression, while miR-19a had a twofold decreased expression in CDH patients, compared with age-matched control patients. Specific metabolites separated neonates with CDH from controls. A genetic mutation found in a small subset of patients.

Conclusions

Specific patterns of metabolites and miR expression can be discerned in TA samples in infants with CDH.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miRs with increased expression in CDH.
Fig. 2: miRs with decreased expression in CDH.
Fig. 3: Distinct composition of metabolites from CDH, CDHPH, and control (CTRLs) subjects.

Similar content being viewed by others

References

  1. Langham MR Jr, Kays DW, Ledbetter DJ, Frentzen B, Sanford LL, Richards DS. Congenital diaphragmatic hernia. Epidemiology and outcome. Clin Perinatol. 1996;23:671–88.

    Article  Google Scholar 

  2. Desai AA, Ostlie DJ, Juang D. Optimal timing of congenital diaphragmatic hernia repair in infants on extracorporeal membrane oxygenation. Semin Pediatr Surg. 2015;24:17–9.

    Article  Google Scholar 

  3. Hedrick HL. Management of prenatally diagnosed congenital diaphragmatic hernia. Semin Pediatr Surg. 2013;22:37–43.

    Article  Google Scholar 

  4. Jani JC, Nicolaides KH, Gratacos E, Valencia CM, Done E, Martinez JM, et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2009;34:304–10.

    Article  CAS  Google Scholar 

  5. Shue EH, Miniati D, Lee H. Advances in prenatal diagnosis and treatment of congenital diaphragmatic hernia. Clin Perinatol. 2012;39:289–300.

    Article  Google Scholar 

  6. Chiu PP, Ijsselstijn H. Morbidity and long-term follow-up in CDH patients. Eur J Pediatr Surg. 2012;22:384–92.

    Article  Google Scholar 

  7. Pennaforte T, Rakza T, Fily A, Mur S, Diouta L, Sfeir R. et al. [The long-term follow-up of patients with a congenita diaphragmatic hernia: review of the literature]. Arch Pediatr. 2013;20 (Suppl 1):S11–8.

    Article  Google Scholar 

  8. Spoel M, van den Hout L, Gischler SJ, Hop WC, Reiss I, Tibboel D, et al. Prospective longitudinal evaluation of lung function during the first year of life after repair of congenital diaphragmatic hernia. Pediatr Crit Care Med. 2012;13:e133–9.

    Article  Google Scholar 

  9. Herrera-Rivero M, Zhang R, Heilmann-Heimbach S, Mueller A, Bagci S, Dresbach T, et al. Circulating microRNAs are associated with pulmonary hypertension and development of chronic lung disease in congenital diaphragmatic hernia. Sci Rep. 2018;8:10735.

    Article  Google Scholar 

  10. Pelizzo G, Ballico M, Mimmi MC, Peiro JL, Marotta M, Federico C, et al. Metabolomic profile of amniotic fluid to evaluate lung maturity: the diaphragmatic hernia lamb model. Multidiscip Respir Med. 2014;9:54.

    Article  Google Scholar 

  11. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18:215–22.

    Article  CAS  Google Scholar 

  12. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl. 2010;49:5426–45.

    Article  CAS  Google Scholar 

  13. Bienertova-Vasku J, Novak J, Vasku A. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens. 2015;9:221–34.

    Article  CAS  Google Scholar 

  14. Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med. 2012;185:409–19.

    Article  CAS  Google Scholar 

  15. Pereira-Terra P, Deprest JA, Kholdebarin R, Khoshgoo N, DeKoninck P, Munck AA, et al. Unique tracheal fluid MicroRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg. 2015;262:1130–40.

    Article  Google Scholar 

  16. de Blic J, Midulla F, Barbato A, Clement A, Dab I, Eber E, et al. Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. European Respiratory Society. Eur Respir J. 2000;15:217–31.

    Article  Google Scholar 

  17. Piersigilli F, Lam TT, Vernocchi P, Quagliariello A, Putignani L, Aghai ZH, et al. Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics. Metabolomics. 2019;15:20.

    Article  CAS  Google Scholar 

  18. Team RC. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-projectorg/.

  19. Culhane AC, Thioulouse J, Perriere G, Higgins DG. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics. 2005;21:2789–90.

    Article  CAS  Google Scholar 

  20. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20:1603–14.

    Article  CAS  Google Scholar 

  21. Negi V, Chan SY. Discerning functional hierarchies of microRNAs in pulmonary hypertension. JCI Insight. 2017;2:e91327.

    Article  Google Scholar 

  22. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995;11:415–21.

    Article  CAS  Google Scholar 

  23. Quinn TM, Sylvester KG, Kitano Y, Kitano Y, Liechty KW, Jarrett BP, et al. TGF-beta2 is increased after fetal tracheal occlusion. J Pediatr Surg. 1999;34:701–4. discussion 704-5.

    Article  CAS  Google Scholar 

  24. Oue T, Shima H, Taira Y, Puri P. Administration of antenatal glucocorticoids upregulates peptide growth factor gene expression in nitrofen-induced congenital diaphragmatic hernia in rats. J Pediatr Surg. 2000;35:109–12.

    Article  CAS  Google Scholar 

  25. Chen H, Zhuang F, Liu YH, Xu B, Del Moral P, Deng W, et al. TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung. Eur Respir J. 2008;32:285–95.

    Article  CAS  Google Scholar 

  26. McDevitt TM, Gonzales LW, Savani RC, Ballard PL. Role of endogenous TGF-beta in glucocorticoid-induced lung type II cell differentiation. Am J Physiol Lung Cell Mol Physiol. 2007;292:L249–57.

    Article  CAS  Google Scholar 

  27. Rhodes CJ, Ghataorhe P, Wharton J, Rue-Albrecht KC, Hadinnapola C, Watson G, et al. Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension. Circulation. 2017;135:460–75.

    Article  CAS  Google Scholar 

  28. Zhao Y, Peng J, Lu C, Hsin M, Mura M, Wu L, et al. Metabolomic heterogeneity of pulmonary arterial hypertension. PLoS ONE. 2014;9:e88727.

    Article  Google Scholar 

  29. Lewis GD, Ngo D, Hemnes AR, Farrell L, Domos C, Pappagianopoulos PP, et al. Metabolic profiling of right ventricular-pulmonary vascular function reveals circulating biomarkers of pulmonary hypertension. J Am Coll Cardiol. 2016;67:174–89.

    Article  CAS  Google Scholar 

  30. Shao Z, Wang Z, Shrestha K, Thakur A, Borowski AG, Sweet W, et al. Pulmonary hypertension associated with advanced systolic heart failure: dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase-1. J Am Coll Cardiol. 2012;59:1150–8.

    Article  Google Scholar 

  31. Zhao YD, Chu L, Lin K, Granton E, Yin L, Peng J, et al. A biochemical approach to understand the pathogenesis of advanced pulmonary arterial hypertension: metabolomic profiles of arginine, sphingosine-1-phosphate, and heme of human lung. PLoS ONE. 2015;10:e0134958.

    Article  Google Scholar 

  32. Cheah FC, Darlow BA, Winterbourn CC. Association of hydrogen peroxide in exhaled breath condensates from infants with respiratory distress syndrome with the development of chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2006;91:F155.

    Article  Google Scholar 

  33. Rosso MI, Roark S, Taylor E, Ping X, Ward JM, Roche K, et al. Exhaled breath condensate in intubated neonates–a window into the lung's glutathione status. Respir Res. 2014;115;1.

    Article  Google Scholar 

  34. Kononikhin AS, Starodubtseva NL, Chagovets VV, Ryndin AY, Burov AA, Popov IA, et al. Exhaled breath condensate analysis from intubated newborns by nano-HPLC coupled to high resolution MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1047:97–105.

    Article  CAS  Google Scholar 

  35. Pober BR. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. Am J Med Genet C Semin Med Genet. 2007;145C:158–71.

    Article  CAS  Google Scholar 

  36. Holder AM, Klaassens M, Tibboel D, de Klein A, lee b, Scott DA. Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet. 2007;80:825–45.

    Article  CAS  Google Scholar 

  37. Beck TF, Campeau PM, Jhangiani SN, Gambin T, Li AH, Abo-zahrah R, et al. FBN1 contributing to familial congenital diaphragmatic hernia. Am J Med Genet A. 2015;167A:831–6.

    Article  Google Scholar 

  38. Beck TF, Veenma D, Shchelochkov OA, Yu Z, Kim BJ, Zaveri HP, et al. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice. Hum Mol Genet. 2013;22:1026–38.

    Article  CAS  Google Scholar 

  39. Yu L, Wynn J, Ma L, Guha S, Mychaliska GB, Crombleholme TM, et al. De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet. 2012;49:650–9.

    Article  CAS  Google Scholar 

  40. Longoni M, High FA, Qi H, Joy MP, Hila R, Coletti CM, et al. Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum Genet. 2017;136:679–91.

    Article  CAS  Google Scholar 

  41. Qi H, Yu L, Zhou X, Wynn J, Zhao H, Guo Y, et al. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet. 2018;14:e1007822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Bhandari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piersigilli, F., Syed, M., Lam, T.T. et al. An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling. J Perinatol 40, 952–961 (2020). https://doi.org/10.1038/s41372-020-0623-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-0623-3

Search

Quick links