Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

Noninvasive neuromodulation of the prefrontal cortex in young women with obesity: a randomized clinical trial

Abstract

Background/objectives

Obesity is associated with reduced neurocognitive performance. Individuals with obesity show decreased activation in the left dorsolateral prefrontal cortex (DLPFC), a key brain region relevant to the regulation of eating behavior. Transcranial direct current stimulation (tDCS) has emerged as a potential technique to correct these abnormalities. However, there is limited information to date, particularly in clinical settings and regarding long-term effects of tDCS. This study aimed to investigate the effects of DLPFC-targeted tDCS in young women with obesity.

Subject/methods

Randomized, double-blind, sham-controlled parallel-design clinical trial conducted in 38 women, aged 20–40 years, with BMI 30–35 kg/m2. Study design: Phase I: target engagement (immediate effects of tDCS on working memory performance), Phase II: tDCS only (ten sessions, 2 weeks), Phase III: tDCS + hypocaloric diet (six sessions, 30% energy intake reduction, 2 weeks, inpatient), Phase IV: follow-up at 1, 3, and 6 months. Primary outcome: change in body weight. Secondary outcomes: change in eating behavior and appetite. Additional analyses: effect of Catechol-O-methyl transferase (COMT) gene variability. Data were analyzed as linear mixed models.

Results

There was no group difference in change in body weight during the tDCS intervention. At follow-up, the active group lost less weight than the sham group. In addition, the active group regained weight at 6-month follow-up, compared with sham. Genetic analysis indicated that COMT Met noncarriers were the subgroup that accounted for this paradoxical response in the active group.

Conclusion

Our results suggest that in young women with class I obesity, tDCS targeted to the DLPFC does not facilitate weight loss. Indeed, we found indications that tDCS could have a paradoxical effect in this population, possibly connected with individual differences in dopamine availability. Future studies are needed to confirm these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design: randomized, double-blind, sham-controlled clinical trial comparing active versus sham tDCS, with four stages.
Fig. 2: Primary outcome.
Fig. 3: Secondary outcome.
Fig. 4: Cognitive performance.
Fig. 5: Effect of COMT polymorphism.

Similar content being viewed by others

References

  1. García-García I, Michaud A, Dadar M, Zeighami Y, Neseliler S, Collins DL, et al. Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent dataset. Int J Obes. 2019;43:943–51.

    Article  Google Scholar 

  2. Vainik U, Dagher A, Dubé L, Fellows LK. Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci Biobehav Rev. 2013;37:279–99.

    Article  PubMed  Google Scholar 

  3. Veronese N, Facchini S, Stubbs B, Luchini C, Solmi M, Manzato E, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94.

    Article  PubMed  Google Scholar 

  4. Prickett C, Brennan L, Stolwyk R. Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract. 2015;9:93–113.

    Article  PubMed  Google Scholar 

  5. Vainik U, Baker TE, Dadar M, Zeighami Y, Michaud A, Zhang Y, et al. Neurobehavioral correlates of obesity are largely heritable. Proc Natl Acad Sci USA. 2018;115:9312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Rahilly S, Farooqi IS. Human obesity: a heritable neurobehavioral disorder that is highly sensitive to environmental conditions. Diabetes. 2008;57:2905–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lowe CJ, Reichelt AC, Hall PA. The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn Sci. 2019;23:349–61.

    Article  PubMed  Google Scholar 

  8. Stoeckel LE, Birch LL, Heatherton T, Mann T, Hunter C, Czajkowski S, et al. Psychological and neural contributions to appetite self-regulation. Obes Silver Spring. 2017;25:S17–25.

    Article  Google Scholar 

  9. Alonso-Alonso M, Pascual-Leone A. The right brain hypothesis for obesity. J Am Med Assoc. 2007;297:1819–22.

    Article  CAS  Google Scholar 

  10. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heinitz S, Reinhardt M, Piaggi P, Weise CM, Diaz E, Stinson EJ, et al. Neuromodulation directed at the prefrontal cortex of subjects with obesity reduces snack food intake and hunger in a randomized trial. Am J Clin Nutr. 2017;106:1347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324:646–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, et al. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci USA. 2010;107:14811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang G-J, Volkow ND, Telang F, Jayne M, Ma Y, Pradhan K, et al. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc Natl Acad Sci USA. 2009;106:1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes. 2007;31:440–8.

    Article  CAS  Google Scholar 

  16. McCaffery JM, Haley AP, Sweet LH, Phelan S, Raynor HA, Del Parigi A, et al. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am J Clin Nutr. 2009;90:928–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hassenstab JJ, Sweet LH, Del Parigi A, McCaffery JM, Haley AP, Demos KE, et al. Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: a preliminary MRI study. Psychiatry Res. 2012;202:77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weygandt M, Mai K, Dommes E, Leupelt V, Hackmack K, Kahnt T, et al. The role of neural impulse control mechanisms for dietary success in obesity. NeuroImage. 2013;83:669–78.

    Article  PubMed  Google Scholar 

  19. Neseliler S, Hu W, Larcher K, Zacchia M, Dadar M, Scala SG, et al. Neurocognitive and hormonal correlates of voluntary weight loss in humans. Cell Metab. 2019;29:39–49.e4.

    Article  CAS  PubMed  Google Scholar 

  20. Le DS, Pannacciulli N, Chen K, Del Parigi A, Salbe AD, Reiman EM, et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am J Clin Nutr. 2006;84:725–31.

    Article  CAS  PubMed  Google Scholar 

  21. Le DSN, Pannacciulli N, Chen K, Salbe AD, Del Parigi A, Hill JO, et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am J Clin Nutr. 2007;86:573–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–61.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nitsche MA, Paulus W. Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci. 2011;29:463–92.

    PubMed  Google Scholar 

  24. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–23.

    Article  PubMed  Google Scholar 

  25. Alonso-Alonso M. Translating tDCS into the field of obesity: mechanism-driven approaches. Front Hum Neurosci. 2013;7:512.

    PubMed  PubMed Central  Google Scholar 

  26. Hall PA, Vincent CM, Burhan AM. Non-invasive brain stimulation for food cravings, consumption, and disorders of eating: a review of methods, findings and controversies. Appetite. 2018;124:78–88.

    Article  PubMed  Google Scholar 

  27. Lowe CJ, Vincent C, Hall PA. Effects of noninvasive brain stimulation on food cravings and consumption: a meta-analytic review. Psychosom Med. 2017;79:2–13.

    Article  PubMed  Google Scholar 

  28. Mostafavi SA, Khaleghi A, Mohammadi MR, Akhondzadeh S. Is transcranial direct current stimulation an effective modality in reducing food craving? A systematic review and meta-analysis. Nutr Neurosci. 2018;23:55–67.

    Article  PubMed  Google Scholar 

  29. Fassini PG, Das SK, Miguel Suen VM, Magerowski G, Marchini JS, Araújo da Silva Junior W, et al. Appetite effects of prefrontal stimulation depend on COMT Val158Met polymorphism: a randomized clinical trial. Appetite. 2019. https://doi.org/10.1016/j.appet.2019.05.015.

    Article  PubMed  Google Scholar 

  30. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.

    Article  PubMed  Google Scholar 

  31. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.

    Article  CAS  PubMed  Google Scholar 

  32. Das SK, Gilhooly CH, Golden JK, Pittas AG, Fuss PJ, Dallal GE, et al. Long term effects of energy-restricted diets differing in glycemic load on metabolic adaptation and body composition. Open Nutr J. 2007;85:1023–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Institute of Medicine. DRI dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids (Macronutrients). 2005. http://www.nap.edu/read/10490/chapter/1. Accessed 3 Oct 2016.

  34. Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário internacional de atividade física (IPAQ): estudo de validade e reprodutibilidade no Brasil. 2001;6:5–18.

  35. Cooper JA, Watras AC, O’Brien MJ, Luke A, Dobratz JR, Earthman CP, et al. Assessing validity and reliability of resting metabolic rate in six gas analysis systems. J Am Diet Assoc. 2009;109:128–32.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fassini PG, Silvah JH, Lima CMM, Brandao CFCCM, Wichert-Ana L, Marchini JS, et al. Indirect calorimetry: from expired CO2 production, inspired O2 consumption to energy equivalent. J Obes Weight Loss Ther. 2015;S5:1–3.

    Google Scholar 

  37. Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106:881–903.

    Article  PubMed  Google Scholar 

  38. Weir JBDB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55:628–34.

    Article  CAS  PubMed  Google Scholar 

  40. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. World Health Organ Tech Rep Ser. 1995;854:1–452.

    Google Scholar 

  41. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr Edinb Scotl. 2004;23:1430–53.

    Article  Google Scholar 

  42. Blundell JE, De Graaf K, Finlayson G, Halford JCG, Hetherington M, King NA, et al. Measuring food intake, hunger, satiety and satiation in the laboratory. In: Allison DB, Baskin ML, editors. Handbook of assessment methods for eating behaviours and weight-related problems: measures, theory and research. 2nd ed. Newbury Park, California: Sage; 2009. p. 283–325.

  43. de Medeiros ACQ, Yamamoto ME, Pedrosa LFC, Hutz CS. The Brazilian version of the three-factor eating questionnaire-R21: psychometric evaluation and scoring pattern. Eat Weight Disord. 2017;22:169–75.

    Article  PubMed  Google Scholar 

  44. Queiroz de Medeiros AC, Campos Pedrosa LF, Hutz CS, Yamamoto ME. Brazilian version of food cravings questionnaires: psychometric properties and sex differences. Appetite. 2016;105:328–33.

    Article  PubMed  Google Scholar 

  45. Monteiro JP, Pfrimer K, Tremeschin MH, de Camargo Molina M, Chiarello P. Consumo alimentar—visualizando porções. São Paulo: Guanabara Koogan, 2007.

  46. Pinheiro ABV, Lacerda EMA, Benzecry EH, Gomes MCS, Costa VM. Tabela para avaliação de consumo alimentar em medidas caseiras (Table for evaluation of food consumption in home measures). 5th ed. São Paulo: Atheneu; 2008.

    Google Scholar 

  47. Tabela brasileira de composição de alimentos—TACO. 4th ed. Universidade Estadual de Campinas—UNICAMP, Núcleo de Estudos e Pesquisas em Alimentação—NEPA: Campinas, 2011. http://www.nepa.unicamp.br/taco/contar/taco_4_edicao_ampliada_e_revisada.pdf?arquivo=taco_4_versao_ampliada_e_revisada.pdf.

  48. USDA nutrient database for standard reference. Release 12. 1998. https://ndb.nal.usda.gov/ndb/search.

  49. Marron EM, Viejo-Sobera R, Cuatrecasas G, Redolar-Ripoll D, Lorda PG, Datta A, et al. Prefronto-cerebellar neuromodulation affects appetite in obesity. Int J Obes. 2018. https://doi.org/10.1038/s41366-018-0278-8.

    Article  PubMed  Google Scholar 

  50. Blechert J, Meule A, Busch NA, Ohla K. Food-pics: an image database for experimental research on eating and appetite. Front Psychol. 2014;5:617.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex J Devoted Study Nerv Syst Behav. 2013;49:1195–205.

    Article  Google Scholar 

  52. Gluck ME, Alonso-Alonso M, Piaggi P, Weise CM, Jumpertz-von Schwartzenberg R, Reinhardt M, et al. Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. Obes Silver Spring. 2015;23:2149–56.

    Article  Google Scholar 

  53. Fregni F, Orsati F, Pedrosa W, Fecteau S, Tome FAM, Nitsche MA, et al. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite. 2008;51:34–41.

    Article  PubMed  Google Scholar 

  54. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.

    Article  PubMed  Google Scholar 

  55. Fonteneau C, Redoute J, Haesebaert F, Le Bars D, Costes N, Suaud-Chagny MF, et al. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb Cortex. 2018;28:2636–46.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stice E, Yokum S, Zald D, Dagher A. Dopamine-based reward circuitry responsivity, genetics, and overeating. Curr Top Behav Neurosci. 2011;6:81–93.

    Article  PubMed  Google Scholar 

  57. Somerville LH, Jones RM, Casey BJ. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 2010;72:124–33.

    Article  PubMed  Google Scholar 

  58. Welter MW, Welter CJ. Evaluation of killed and modified live porcine rotavirus vaccines in cesarean derived colostrum deprived pigs. Vet Microbiol. 1990;22:179–86.

    Article  CAS  PubMed  Google Scholar 

  59. Amo Usanos C, Valenzuela PL, de la Villa P, Navarro SM, Melo Aroeira AE de, Amo Usanos I, et al. Neuromodulation of the prefrontal cortex facilitates diet-induced weight loss in midlife women: a randomized, proof-of-concept clinical trial. Int J Obes. 2019. https://doi.org/10.1038/s41366-019-0486-x.

    Article  PubMed  Google Scholar 

  60. Kekic M, McClelland J, Campbell I, Nestler S, Rubia K, David AS, et al. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings. Appetite. 2014;78:55–62.

    Article  PubMed  Google Scholar 

  61. Truong DQ, Magerowski G, Blackburn GL, Bikson M, Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage Clin. 2013;2:759–66.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wiegand A, Nieratschker V, Plewnia C. Genetic modulation of transcranial direct current stimulation effects on cognition. Front Hum Neurosci. 2016;10:651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, et al. Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul. 2018;11:465–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a research grant from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo); São Paulo Research Foundation (Funding reference 2016/04766-6, 2016/10785-3, 2016/14592-5); and FAEPA (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto—USP, Funding reference 27/2018). Additional support came from Harvard Catalyst, The Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health Award UL1 TR002541), and financial contributions from Harvard University and its affiliated academic health care centers. The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic health care centers, or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

PGF and MAA had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: MAA, PGF, SKD, VMMS, and GM. Acquisition, analysis, or interpretation of data: PGF and MAA. Drafting of the paper: PGF and MAA. Critical revision of the paper for important intellectual content: PGF, MAA, SKD, VMMS and GM. Statistical analysis: PGF and MAA. Obtained funding: VMMS and PGF. Administrative, technical, or material support: PGF, MAA, SKD, VMMS, GM, JSM, WAS, IRS, RSRS, and CDM. Study supervision: MAA and VMMS.

Corresponding author

Correspondence to Miguel Alonso-Alonso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fassini, P.G., Das, S.K., Magerowski, G. et al. Noninvasive neuromodulation of the prefrontal cortex in young women with obesity: a randomized clinical trial. Int J Obes 44, 1279–1290 (2020). https://doi.org/10.1038/s41366-020-0545-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0545-3

This article is cited by

Search

Quick links