Skip to main content

Advertisement

Log in

Toxic effects of lead in plants grown in brazilian soils

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Lead (Pb) in soils can be transferred to plants, animals, and even humans. The toxicity of Pb is worrisome and therefore environmental quality criteria, established by laws to support the management of contaminated sites, have been developed to prevent its deleterious effects in a wide range of soils, uses, and occupations. In Brazil, the CONAMA Resolution 420/2009 established that Brazilian states may define their prevention values (PV) for metals in soils. However, the established values should be well studied, since a wide variation of sensitivity of species exposed to Pb is reported and several have a high tolerance. We aimed to evaluate Pb toxicity to validate the suitability of the current Brazilian Pb-prevention value. A trial was carried with two plant species (sorghum and soybean) grown in two tropical soils (Typic Hapludox and Rhodic Acrudox), following ISO 11.269-2 protocols (ISO 2012). The tested soils were contaminated with Pb-acetate at the following concentrations: 0, 200, 400, 800, 1200, 1600, 2200, 2800, and 3200 mg kg−1 of dry soil. Differences regarding species sensitivity were observed and sorghum seemed to be less sensitive to Pb concentration in soils. Soil characteristics as higher clay and organic matter content were responsible for decreasing the overall availability of Pb for plants. Using data from this study and from the literature, we constructed a species sensitivity distribution curve and calculated the HC5 (hazardous concentration to 5% of variables evaluated). The HC5 was 132.5 mg kg−1, which suggests that the PV currently used in Brazil (72 mg kg−1) is sufficiently protective for Brazilian soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agency for toxic substances and disease control (ATSDR) (2017) The Priority List of Hazardous Substances 201. Retrieved from http://www.atsdr.cdc.gov/spl/. Accessed Nov 2018

  • Alexandrino RCS (2014) Determinação do valor de prevenção para solos contaminados por chumbo no estado de Minas Gerais. Dissertation, Universidade Federal de Lavras. (in Portuguese)

  • Andrade MGD, Melo VDF, Souza LCDP, Gabardo J, Reissman CB (2009) Heavy metals in soils of a lead mining and metallurgy area: II - forms and plant availability. Rev Bras Cienc Solo 33:1889–1898

    Article  Google Scholar 

  • Antosiewicz DM (1992) Adaptation of plants to an environment polluted with heavy metals. Acta Soc Bot Pol 61:281–299. https://doi.org/10.5586/asbp.1992.026

    Article  CAS  Google Scholar 

  • Blanco A, Salazar MJ, Vergara Cid C, Pereyra C, Cavaglieri LR, Becerra AG, Pignata ML, Rodriguez JH (2016) Multidisciplinary study of chemical andbiological factors related to Pb accumulation in sorghum crops grown in contaminated soils and their toxicological implications. J Geochem Explor 166:18–26. https://doi.org/10.1016/j.gexplo.2016.01.020

    Article  CAS  Google Scholar 

  • Bleeker EAJ, Van Gestel CAM (2007) Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands. Environ Pollut 148:824–32. https://doi.org/10.1016/j.envpol.2007.01.034

    Article  CAS  Google Scholar 

  • Buekers J, Redeker ES, Smolders E (2009) Lead toxicity to wildlife: derivation of a critical blood concentration for wildlife monitoring based on literature data. Sci Total Environ 407:3431–3438

    Article  CAS  Google Scholar 

  • Conama (2009) Resolução n° 420 de 28 de dezembro de 2009. Conselho Nacional do Meio Ambiente, Ministério do Meio Ambiente Brasil, Brasília. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed Oct 2018 (in Portuguese)

  • Correia LO, Brizi JN, Marrocos PCL, Velasco FG, Luzardo FM, Olivares DM, Almeida OH, Santos HM (2016) Bioacumulação de chumbo em plantas de cenoura (Daucus carota) e seus efeitos na saúde humana Gaia Sci 10:302–319. (in Portuguese)

    Article  Google Scholar 

  • Claessen MEC, Barreto WO, Paula JL, Duarte MN (1997) Manual de métodos de análises de solo, 2nd edn. Centro Nacional de Pesquisa de Solos, Rio de Janeiro

    Google Scholar 

  • Darabi SAS, Almodares A, Ebrahimi M (2016) Phytoremediation efficiency of Sorghum bicolor (L) Moench in removing cadmium, lead and arsenic. Open J Environ Biol 1:1–06. https://doi.org/10.17352/ojeb.000001

    Article  Google Scholar 

  • Ding NG, Ma Y, Li X, Zhang T, Wang X (2016) Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables. J Hazard Mater 303:21–27. https://doi.org/10.1016/j.jhazmat.2015.10.027

    Article  CAS  Google Scholar 

  • Dische Z (1962) General color reactions. In: Whistler RL, Wolfran ML (eds) Carbohydrate Chemistry. Academic, New York, pp 477–520

  • Fundação Estadual do Meio Ambiente (FEAM) (2017) Inventário de áreas contaminadas e Minas Gerais. http://www.feam.br/images/stories/2017/AREAS_CONTAMINADAS/DADOS_2017/Invent%C3%A1rio_de_%C3%A1reas_contaminadas_-_2017.pdf Accessed Oct 2018. (in Portuguese)

  • Ferreira DF (2008) SISVAR: um programa para análises e ensino de estatística. Rev Symp Lavras 6:36–41. (in Portuguese)

  • Gandhin N, Sirishan D, Asthana D (2015) Phytoremediation of lead contaminated soil by using Sorghum bicolor. Res Rev Biosci 10:333–342

    Google Scholar 

  • Gardi C, Angelini M, Barceló S, Comerma J, Gaistardo CC, Rojas AE, Jones A, Krasilnikov P, Mendonça-Santos ML, Montanarella L, Muñiz Ugarte O, Schad P, Rodríguez MIV, Vargas R, da Silva MR (2015) Atlas de Solos de América Latina e do Caribe, Comissão Europeia – Serviço de Publicações da União Europeia, L-2995 Luxembourg, p 176. (in Portuguese)

  • Gottesfeld P, Were FH, Adogame L, Gharbi S, San D, Nota MM, Kuepouo G (2018) Soil contamination from lead battery manufacturing and recycling in seven African countries. Environ Res 161:609–614. https://doi.org/10.1016/j.envres.2017.11.055

    Article  CAS  Google Scholar 

  • Grandjean P, Herz KT (2015) Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury and arsenic. J Trace Elem Med Biol 31:130–134. https://doi.org/10.1016/j.jtemb.2014.07.023

    Article  CAS  Google Scholar 

  • Hamvumba R, Mata M, Mweetwa AM (2014) Evaluation of Sunflower (Helianthus annuus L.), Sorghum (Sorghum bicolor L.) and Chinese Cabbage (Brassica chinensis) for Phytoremediation of Lead Contaminated Soils. Environ Pollut 3:65–73. https://doi.org/10.5539/ep.v3n2p65

    Article  CAS  Google Scholar 

  • Hou S, Zheng N, Tang L, Ji X (2018) Effects of cadmium and copper mixtures to carrot and pakchoi under greenhouse cultivation condition. Ecotoxicol Environ Saf 159:172–181. https://doi.org/10.1016/j.ecoenv.2018.04.060

    Article  CAS  Google Scholar 

  • Iball G, Brettle DS (2011) Organ and effective dose reduction in adult chest CT using abdominal lead shielding. Br J Radio 84:1020–1026. https://doi.org/10.1259/bjr/53865832

    Article  CAS  Google Scholar 

  • International Organizations for Standardization - ISO (2012) Soil quality-Determination of the effects of pollutants on soil flora - Part 2: Effects of contaminated soil on the emergence and early growth of higher plants. ISO 11269-2, ISO, Geneva

    Google Scholar 

  • Lima FS, Nascimento CWA, Accioly AMA, Souza CS, Cunha Filho FF (2013) Bioconcentração de chumbo e micronutrientes em hortaliças cultivadas em solo contaminado. Rev Ciênc Agron 44:234–241

    Article  Google Scholar 

  • Lima LRPA, Bernardez LA (2017) Characterization of the soil contamination around the former primary lead smelter at Santo Amaro, Bahia, Brazil. Environ Earth Sci 76:470. https://doi.org/10.1007/s12665-017-6791-6

    Article  CAS  Google Scholar 

  • Liu N, Lin Z, Mo H (2012) Metal (Pb, Cd, and Cu)-induced reactive oxygen species accumulations in aerial root cells of the Chinese banyan (Ficus microcarpa). Ecotoxicology 21:2004–2011. https://doi.org/10.1007/s10646-012-0935-y

    Article  CAS  Google Scholar 

  • Liu D, Zou J, Meng Q, Zou J, Jiang W (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143. https://doi.org/10.1007/s10646-008-0266-1

    Article  CAS  Google Scholar 

  • Leal-Alvarado DA, Espadas-Gil F, Sáenz-Carbonell L, Talavera-May C, Santamaría JM (2016) Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol 171:37–47. https://doi.org/10.1016/j.aquatox.2015.12.008

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2001) Effect of clay and organic matter type on the ecotoxicity of Zn and Cd to the potworm E. albidus. Chemosphere 44:1669–1672. https://doi.org/10.1016/s0045-6535(00)00565-8

    Article  CAS  Google Scholar 

  • Luo W, Verweij RA, Van Gestel CAM (2014a) Assessment of the bioavailability and toxicity of lead polluted soils using a combination of chemical approaches and bioassays with the collembolan Folsomia candida. J Hazard Mater 280:524–530. https://doi.org/10.1016/j.jhazmat.2014.08.044

    Article  CAS  Google Scholar 

  • Luo W, Verweij RA, Van Gestel CAM (2014b) Contribution of soil properties of shooting fields to lead biovailability and toxicity to Enchytraeus crypticus. Soil Biol Biochem 76:235–241. https://doi.org/10.1016/j.soilbio.2014.05.023

    Article  CAS  Google Scholar 

  • Malavolta E (1981) Manual de química agrícola: adubos e adubação. Agronômica, São Paulo. (in Portuguese)

    Google Scholar 

  • Malavolta E, Muraoka T (1985) Avaliação do estado nutricional e da fertilidade do solo: métodos de vegetação e diagnose por subtração em vasos. USP-CENA, Piracicaba

    Google Scholar 

  • Mendes AMS, Duda GP, Nascimento CWAD, Silva MO (2006) Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Sci Agric 63:328–332

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426–428

    CAS  Google Scholar 

  • Moreira FR, Moreira JC(2004) Os efeitos do chumbo sobre o organismo humano e seu significado para a saúde. Rev Panam Salud Publica 15:119–129. (in Portuguese)

    Article  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Paltseva A, Cheng Z, Deeb M, Groffman PM, Shaw RK, Maddaloni M (2018) Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci Total Environ 640–641:273–283. https://doi.org/10.1016/j.scitotenv.2018.05.296

    Article  CAS  Google Scholar 

  • Ping H, Zhi-An L, Bi Z, Han-Ping X, Gang W (2013) Heavy metal contamination in soil and soybean near the Dabaoshan Mine, South China. Pedosph Int 23:298–304. https://doi.org/10.1016/S1002-0160(13)60019-3

    Article  Google Scholar 

  • Posthuma L, Suter II GW, Traas TP (2001) Species sensitivity distributions in ecotoxicology. Lewis Publisher, Boca Raton, USA

    Book  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4

    Article  CAS  Google Scholar 

  • Romero-Freire A, Peinado FJ, Van Gestel AM (2015) Effect of soil properties on the toxicity of Pb: assesment of the appropriateness of guideline values. J Hazard Mater 289:46–53. https://doi.org/10.1016/j.jhazmat.2015.02.034

    Article  CAS  Google Scholar 

  • Rodriguez JH, Salazar MJ, Steffan L, Pignata ML, Franzaring J, Klumpp A, Fangmeier A (2014) Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina. J Geochem Explor 145:129–134. https://doi.org/10.1016/j.gexplo.2014.05.025

    Article  CAS  Google Scholar 

  • Rossato LV, Nicoloso FT, Farias JG, Cargnelluti D, Tabaldi LA, Antes FG, Dressler VL, Morsch VM, Schetinger MRC (2012) Effects of lead on the growth, lead accumulation and physiological responses of Pluchea sagittalis. Ecotoxicology 21:111. https://doi.org/10.1007/s10646-011-0771-5

    Article  CAS  Google Scholar 

  • Santos LFP, Trigueiro INS, Lemos VA, Furtunato DMN, Cardoso R, de CV (2013a) Assessment of cadmium and lead in commercially important seafood from São Francisco do Conde, Bahia, Brazil. Food Control 33:193–199. https://doi.org/10.1016/j.foodcont.2013.02.024

    Article  CAS  Google Scholar 

  • Sarruge JR, Haag HP (1974) Análise química das plantas. ESALQ, Piracicaba. (in Portuguese)

    Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. https://doi.org/10.1590/S1677-04202005000100004

    Article  CAS  Google Scholar 

  • Smith E, Kempson IM, Juhasz AL, Weber J, Rofe A, Gancarz D, Naidu R, McLaren RG, Gräfe M (2011) In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environ Sci Technol 45:6145–6152. https://doi.org/10.1021/es200653k

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. U.S. Department of Agriculture, Washington

    Google Scholar 

  • Soldatini GF, Lucia G (1992) Comparisons of photosynthetic responses of sunflower and soybean to mild water stress. Biochemie Und Physiologie Der Pflanz 188:321–331. https://doi.org/10.1016/S0015-3796(11)80127-7

    Article  CAS  Google Scholar 

  • Son J, Ryoo MIl, Jung J, Cho K (2007) Effects of cadmium, mercury and lead on the survival and instantaneous rate of increase of Paronychiurus kimi (Lee) (Collembola). Appl Soil Ecol 35:404–411

    Article  Google Scholar 

  • Teixeira WG, Viana JHM, Donagemma GK (2017) Manual de Métodos de Análise de Solo, 3 ed. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brasília

    Google Scholar 

  • Teodoro JC (2014) Determinação do valor de prevenção para o chumbo em solos: testes fitotoxicológicos. 2016. Dissertation, Universidade Federal de Lavras. (in Portuguese)

  • Tovar-Sánchez E, Cervantes-Ramírez T, Castañeda-Bautista J, Gómez-Arroyo S, Ortiz-Hernández L, Sánchez-Salinas E, Mussali-Galante P (2018) Response of Zea mays to multimetal contaminated soils: a multibiomarker approach. Ecotoxicology 27:1161–1177. https://doi.org/10.1007/s10646-018-1974-9

    Article  CAS  Google Scholar 

  • Van Vlaardingen PLA, Traas TP, Wintersen AM, Aldenberg T (2004) ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands, Report no. 601501028/2004

    Google Scholar 

  • Xalxo R, Keshavkant S (2018) Hydrolytic enzymes mediated lipid-DNA catabolism and altered gene expression of antioxidants under combined application of lead and simulated acid rain in Fenugreek (Trigonella foenum graecum L.) seedlings. Ecotoxicology 27:1404–1413. https://doi.org/10.1007/s10646-018-1996-3

    Article  CAS  Google Scholar 

  • Wiseman CL, Zereini F, Putmann W (2013) Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci Total Environ 442:86–95. https://doi.org/10.1016/j.scitotenv.2012.10.051

    Article  CAS  Google Scholar 

  • Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T (2015) Influence of ageing on lead bioavailability in soils: A swine study. Environ Sci Pollut Res 22:8979–8988. https://doi.org/10.1007/s11356-014-3577-1

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yang T, He Q, He C, Wang A, Sheng L (2018) Effect of planting and fertilization on lead partitioning in dredged sediment. Ecotoxicology 27:69–80. https://doi.org/10.1007/s10646-017-1871-7

    Article  CAS  Google Scholar 

  • Zhao L, Xu YF, Hou H, Shangguan YX, Li FS (2014) Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci Total Environ 468:654–662. https://doi.org/10.1016/j.scitotenv.2013.08.094

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Minas Gerais State Research Foundation (FAPEMIG), National Council for Scientific and Technological Development (CNPq), and Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support in the development of this work and for the scholarships provided.

Funding

This study was funded by FAPEMIG, The State of Minas Gerais Research Foundation (grant number APQ 1084/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João José Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cândido, G.S., Martins, G.C., Vasques, I.C.F. et al. Toxic effects of lead in plants grown in brazilian soils. Ecotoxicology 29, 305–313 (2020). https://doi.org/10.1007/s10646-020-02174-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02174-8

Keywords

Navigation