Skip to main content

Advertisement

Log in

Investigation of potentials of \(\hbox {C}_{30}\) and \(\hbox {Ge}_{30}\) as anode in metal-ion batteries

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Performances of \(\hbox {C}_{30}\) and \(\hbox {Ge}_{30}\) nanocages for anode electrodes in metal-ion battery (MI-B) are studied. Abilities of halogens (F, Br and Cl) adsorption on \(\hbox {C}_{30}\) and \(\hbox {Ge}_{30}\) potential for anode electrodes of MI-Bs were investigated. Gibbs free energy, voltage of cell, adsorption energy and orbital energy values of studied complexes were calculated and were compared. Results displayed the \(V_{\mathrm{cell}}\) of \(\hbox {K-Ge}_{30}\) was higher than Na- and \(\hbox {Li-Ge}_{30}\) 0.15 and 0.29 V. \(V_{\mathrm{cell}}\) of K, Na and Li on \(\hbox {Ge}_{30}\) were higher than \(\hbox {C}_{30}\) 0.18, 0.17 and 0.15 V. The \(\hbox {G}_{\mathrm{ad}}\) of halogens (F, Br and Cl) on \(\hbox {Ge}_{30}\) were higher than \(\hbox {C}_{30}\) 5.19, 4.63 and 4.91 eV. \(V_{\mathrm{cell}}\) of K-halogen-, Na-halogen- and \(\hbox {Li-halogen-Ge}_{30}\) are higher than \(\hbox {C}_{30}\) 0.39, 0.36 and 0.32 V. \(\hbox {G}_{\mathrm{ad}}\) of 2, 3 and 4 halogens (F, Br and Cl) on \(\hbox {Ge}_{30}\) are higher than \(\hbox {C}_{30}\) ca 5.12, 3.29 and 4.64 eV, respectively. Finally, the \(\hbox {F-Ge}_{29}\) with high performance and \(V_{\mathrm{cell}}\) was proposed as anode electrode of potassium ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater.23 947

    CAS  Google Scholar 

  2. Gao W, Haratipour P, Kahkha M R R and Tahvili A 2018 Ultrason. Sonochem.44 152

    CAS  Google Scholar 

  3. Mostavi A, Kabir M and Ozevin D 2017 App. Phys. Lett.111 201905

    Google Scholar 

  4. Hu P, Wang X and Wang T 2016 Adv. Sci.3 1600112

    Google Scholar 

  5. Beheshtian J and Peyghan A A 2012 Struct. Chem.23 1567

    CAS  Google Scholar 

  6. Salari A A 2017 Inorg. Chim. Acta456 18

    CAS  Google Scholar 

  7. Baris O, Malcioglu P and Erkoc S 2005 J. Mol. Graphics Modell.23 367

    Google Scholar 

  8. Bagheri Z and Peyghan A A 2013 Comp. Theor. Chem.1008 20

    CAS  Google Scholar 

  9. Peyghan A A, Rastegar S F and Hadipour N L 2014 Phys. Lett. A378 2184

    CAS  Google Scholar 

  10. Beheshtian J, Peyghan A A and Noei M 2013 Sens. Actuators B: Chem.181 829

    CAS  Google Scholar 

  11. Peyghan A A, Soltani A and Pahlevani A A 2013 Appl. Surf. Sci.270 25

    CAS  Google Scholar 

  12. Shi S, Ouyang C, Lei M and Tang W 2007 J. Power Sources171 908

    CAS  Google Scholar 

  13. Ahmadi A, Beheshtian J and Kamfiroozi M 2012 J. Mol. Model.18 1729

    CAS  Google Scholar 

  14. Shi S, Gao J, Liu Y, Zhao Y, Wu Q and Ju W 2015 Chin. Phys. B25 018212

    Google Scholar 

  15. Soltani A, Ahmadi Peyghan A and Bagheri Z 2013 Physica E48 176

    CAS  Google Scholar 

  16. Peyghan A A, Baei M T and Moghimi M 2012 Comp. Theor. Chem.997 63

    CAS  Google Scholar 

  17. Beheshtian J, Kamfiroozi M and Bagheri Z 2012 Chin. J. Chem. Phys.25 60

    CAS  Google Scholar 

  18. Chowdhury C H, Karmakar S H and Datta A 2016 ACS Energy Lett.1 253

    CAS  Google Scholar 

  19. Karmakar S H, Chowdhury C H and Datta A 2016 J. Phys. Chem. C120 14522

    CAS  Google Scholar 

  20. Luo W, Shen F, Bommier C, Zhu H, Ji X and Hu L 2016 Acc. Chem. Res.49 231

    CAS  Google Scholar 

  21. Tsuneda T, Song J W, Suzuki S and Hirao K 2010 J. Chem. Phys.133 174101

    Google Scholar 

  22. Kar R, Song J W and Hirao K 2013 J. Comput. Chem.34 958

    CAS  Google Scholar 

  23. Hosseini J, Rastgou A and Moradi R 2017 J. Mol. Liq.225 913

    CAS  Google Scholar 

  24. Najafi M 2017 Can. J. Chem.95 687

    CAS  Google Scholar 

  25. Nejati K, Hosseinian A, Bekhradnia A and Vessally E 2017 J. Mol. Graph. Mod.74 1

    CAS  Google Scholar 

  26. Hosseinian A, Soleimani S, Arshadi S, Vessally E and Edjlali L 2017 Phys. Lett. A381 2010

    CAS  Google Scholar 

  27. Andzelm J and Kolmel C 1995 J. Chem. Phys.103 9312

    CAS  Google Scholar 

  28. Gan L H and Zhao J Q 2009 Physica E41 1249

    CAS  Google Scholar 

  29. Schmidt M W, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem.14 1347

    CAS  Google Scholar 

  30. Boys S F and Bernardi F 1970 Mol. Phys.19 553

    CAS  Google Scholar 

  31. Baghban A, Sasanipour J, Alizad M and Vafaee M 2017 Chem. Eng. Res. Des.126 67

    CAS  Google Scholar 

  32. Razavi R, Hosseini S M A and Ranjbar M 2014 Iran J. Chem. Chem. Eng.33 29

    CAS  Google Scholar 

  33. Razavi R, Kardani M, Ghanbari A, Lariche M and Baghban A 2018 Petrol. Sci. Technol.36 807

    CAS  Google Scholar 

  34. Parsaee Z, Karachi N and Razavi R 2018 Ultrason. Sonochem.47 36

    CAS  Google Scholar 

  35. Zahedifar M, Razavi R and Sheibani H 2016 J. Mol. Struct.1125 730

    CAS  Google Scholar 

  36. Karachi N, Hosseini M, Parsaee Z and Razavi R 2018 J. Photochem. Photobiol.364 344

    CAS  Google Scholar 

  37. Bie R J, Siddiqui M K, Razavi R, Taherkhani M and Najafi M 2018 Acta Chim. Slov.65 303

    CAS  Google Scholar 

  38. Sharifian S, Harasek M and Haddadi B 2016 Chem. Prod. Process. Model.11 67

    CAS  Google Scholar 

  39. Sharifian S and Harasek M 2015 Chem. Eng. Trans.45 409

    Google Scholar 

  40. Sharifian S, Asasian Kolur N and Harasek M 2019 Energy Sources1 11

    Google Scholar 

  41. Afshar A, Hosseini S and Behzadfar E 2014 Sci. Iran D Comput. Sci. Eng. Electr. Eng.21 2107

    Google Scholar 

  42. Hosseini S A, Gorjian M, Rasouli L and Shirali S 2015 Biosci. Biotech. Res. Asia12 141

    Google Scholar 

  43. Ebrahimi A, Hosseini S A and Rahim F 2014 Cent. Eur. J. Immunol.39 400

    Google Scholar 

  44. Rahim F, Allahmoradi H, Salari F, Shahjahani M, Fard A D, Hosseini S A et al 2013 Int. J. Hematol. Oncol. Stem. Cell Res.7 41

    Google Scholar 

Download references

Acknowledgements

We acknowledge 2019 Shanxi Provincial Higher Education Technology Innovation Project: Study on Regulation and Modification of Thermal Synthesis System of LiFeP04/C Composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Najafi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 989 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Zhu, K., Ding, L. et al. Investigation of potentials of \(\hbox {C}_{30}\) and \(\hbox {Ge}_{30}\) as anode in metal-ion batteries. Bull Mater Sci 43, 76 (2020). https://doi.org/10.1007/s12034-020-2048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2048-1

Keywords

Navigation