Skip to main content

Advertisement

Log in

Effects of sepiolite on crystallization behaviors and properties of sepiolite/polyoxymethylene composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

For filler-polymer systems, the ultimate importance of interfacial interactions between fillers and polymers lies in improving morphological developments and properties of composites. In this work, sepiolite fiber (SEP)/polyoxymethylene (POM) is formulated through melt extrusion processing, with the aim of promoting the crystallization and overall performance of POM. Results show that hydrogen bonding prevails between SEP hydroxyls and POM C-O-C groups. Thus SEP fibers are dispersed uniformly in the POM matrix due to interfacial interactions between these two components. During the isothermal crystallization process, POM nuclei originate and grow on the SEP surface, resulting in decreasing spherulite sizes and facilitating the POM crystallization. Meanwhile, the crystallinity of POM is increased from 48.3% to 54.1% by the addition of 5 wt% SEP. Noteworthily, mechanical and thermostability performances of SEP/POM composites have been improved considerably by means of sufficient interfacial interactions, enhanced crystallization, and favorable physical properties of SEP. Maximum values of the tensile strength and modulus at 3.0 wt% SEP loading can reach 66 MPa and 2022 MPa, respectively higher than those of neat POM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sigrid L, Visakhn PM, Chandran S (2014) Polyoxymethylene handbook. Wiley, New Jersy

    Google Scholar 

  2. Samyn P, Van Driessche I, Schoukens G (2007) Thermal and spectroscopic analysis of worn polyoxymethylene surfaces and wear debris explaining degradation and polymerisation mechanisms. J Polym Res 14(5):411–422

    CAS  Google Scholar 

  3. Huang Z, Zeng MQ, Liu L, Ren XC (2014) Synthesis and characterization of HALS/UV-absorbers bifunctionalized core-shell elastomer and its application in polyoxymethylene. J Polym Res 21(11):589–600

    Google Scholar 

  4. Ohlin A, Linder L (1993) Biocompatibility of polyoxymethylene in bone. Biomaterials 14(4):285–289

    CAS  PubMed  Google Scholar 

  5. Pavlov VI (1971) Investigation of the effect of spherulite size on the strength and deformation characteristics of isotactic polypropylene films. Mater Sci 4(5):438–440

    Google Scholar 

  6. Guo X, Liu H, Zhang J, Huang J (2014) Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly (lactic acid). Ind Eng Chem Res 53(43):16754–16762

    CAS  Google Scholar 

  7. Hu Y, Ye L (2005) Nucleation effect of polyamide on polyoxymethylene. Polym Eng Sci 45(8):1174–1179

    CAS  Google Scholar 

  8. Sun TJ, Ye L, Zhao XW (2007) Thermostabilising and nucleating effect of montmorillonite on polyoxymethylene. Plast Rubber Compos 36(7–8):350–359

    CAS  Google Scholar 

  9. Xu W, He P (2001) Isothermal crystallization behavior of polyoxymethylene with and without nucleating agents. J Appl Polym Sci 80(2):304–310

    CAS  Google Scholar 

  10. Wang J, Hu XG, Tian M, Stengler R (2007) Study on mechanical and tribological property of nanometer ZrO2-filled polyoxymethylene composites. Polym-Plast Technol 46(5):469–473

    CAS  Google Scholar 

  11. Dan-Mallam Y, Abdullah MZ, Yusoff PSMM (2014) The effect of hybridization on mechanical properties of woven kenaf fiber reinforced polyoxymethylene composite. Polym Compos 35(10):1900–1910

    CAS  Google Scholar 

  12. Guo L, Xu X, Zhang Y, Zhang Z (2014) Effect of functionalized nanosilica on properties of polyoxymethylene-matrix nanocomposites. Polym Compos 35(1):127–136

    CAS  Google Scholar 

  13. Zhao X, Ye L (2010) Preparation, structure, and property of polyoxymethylene/carbon nanotubes thermal conducive composites. J Polym Sci Pol Phys 48(8):905–912

    CAS  Google Scholar 

  14. ZhaoX YL (2011) Structure and properties of highly oriented polyoxymethylene/multi-walled carbon nanotube composites produced by hot stretching. Compos Sci Technol 71(10):1367–1372

    Google Scholar 

  15. Nie WZ, Qi K, Li SF, Zhang LJ (2014) Mechanical enhancement, morphology, and crystallization kinetics of polyoxymethylene-based composites with recycled carbon fiber. J Thermoplast Compos Mater 29:935–950

    Google Scholar 

  16. Bledzki AK, Mamun AA, Feldmann M (2012) Polyoxymethylene composites with natural and cellulose fibers: toughness and heat deflection temperature. Compos Sci Techol 72(15):1870–1874

    CAS  Google Scholar 

  17. Kongkhlang T, Kousaka Y, Umemura T, Nakaya D (2008) Role of primary amine in polyoxymethylene (POM)/bentonite nanocomposite formation. Polymer 49(6):1676–1684

    CAS  Google Scholar 

  18. Pielichowska K, Król K, Majka TM (2016) Polyoxymethylene-copolymer based composites with PEG-grafted hydroxyapatite with improved thermal stability. Thermochim Acta 633:98–107

    CAS  Google Scholar 

  19. Xu W, Ge M, He P (2001) Nonisothermal crystallization kinetics of polyoxymethylene/montmorillonite nanocomposite. J Appl Polym Sci 82(9):2281–2289

    CAS  Google Scholar 

  20. Calderón BA, Sobkowicz MJ (2018) Evidence of compatibility and thermal stability improvement of poly (propylene carbonate) and polyoxymethylene blends. J Appl Polym Sci 135(6):45823–45833

    Google Scholar 

  21. Darder M, López-Blanco M, Aranda P, Aznar AJ, Bravo J, Ruiz-Hitzky E (2006) Microfibrous chitosan-sepiolite nanocomposites. Chem Mater 18(6):1602–1610

    CAS  Google Scholar 

  22. Kavas T, Sabah E, Celik MS (2004) Structural properties of sepiolite-reinforced cement composite. Cement Concrete Res 34(11):2135–2139

    CAS  Google Scholar 

  23. Chen HX, Zheng MS, Sun HY, Jia QM (2007) Characterization and properties of sepiolite/polyurethane nanocomposites. Mater Sci Eng A 445–446:725–730

    Google Scholar 

  24. Duquesne E, Moins S, Alexandre M, Dubois P (2007) How can nanohybrids enhance polyester/sepiolite nanocomposite properties. Macromol Chem Phys 208(23):2542–2550

    CAS  Google Scholar 

  25. Fernández-Barranco C, Yebra-Rodríguez A, La Rubia-García MD, Navas-Martos FJ, Álvarez-Lloret P (2015) Mechanical and crystallographic properties of injection-molded polyamide 66/sepiolite nanocomposites with different clay loading. Polym Compos 36(12):2326–2333

    Google Scholar 

  26. Qiu ZC, Zhang JJ, Niu Y, Huang CL, Yang KK, Wang YZ (2011) Preparation of poly (p-dioxanone)/sepiolite nanocomposites with excellent strength/toughness balance via surface-initiated polymerization. Ind Eng Chem Res 50(17):10006–10016

    CAS  Google Scholar 

  27. Wu J, Zou X, Jing B, Dai W (2015) Effect of sepiolite on the crystallization behavior of biodegradable poly (lactic acid) as an efficient nucleating agent. Polym Eng Sci 55(5):1104–1112

    Google Scholar 

  28. Medeiros ESD, Tocchetto RS, Carvalho LHD, Santos IMG, Souza AG (2001) Nucleating effect and dynamic crystallization of a poly (propylene)/talc system. J Therm Anal Calorim 66(2):523–531

    Google Scholar 

  29. Acosta JL, Herrero CR, Morales E (1991) The effect of sepiolite on isothermal crystallization of semicrystalline blends based on poly (vinylidene fluoride). Eur Polym J 27(1):11–15

    CAS  Google Scholar 

  30. Fukushima K, Fina A, Geobaldo F (2012) Properties of poly (lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. Express Polym Lett 6(11):914–926

    CAS  Google Scholar 

  31. Martino L, Guigo N, van Berkel JG, Sbirrazzuoli N (2007) Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly (ethylene 2, 5-furandicarboxylate). Compos Part B Eng 110:96–105

    Google Scholar 

  32. Mejía A, García N, Guzmán J, Tiemblo P (2013) Confinement and nucleation effects in poly (ethylene oxide) melt-compounded with neat and coated sepiolite nanofibers: modulation of the structure and semicrystalline morphology. Eur Polym J 49(1):118–129

    Google Scholar 

  33. Bilotti E, Fischer HR, Peijs T (2008) Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties. J Appl Polym Sci 107(2):1116–1123

    CAS  Google Scholar 

  34. Manchanda B, Vimal KK, Kapur GS, Kant S, Choudhary V (2016) Effect of sepiolite on nonisothermal crystallization kinetics of polypropylene. J Mater Sci 51(21):9535–9550

    CAS  Google Scholar 

  35. Fernandez-Barranco C, Kozioł AE, Drewniak M, Yebra-Rodriguez A (2018) Structural characterization of sepiolite/polyamide6,6 nanocomposites by means of static and dynamic thermal methods. Appl Clay Sci 153:154–160

    CAS  Google Scholar 

  36. Alkan M, Benlikaya R (2009) Poly (vinyl alcohol) nanocomposites with sepiolite and heat-treated sepiolites. J Appl Polym Sci 112(6):3764–3774

    CAS  Google Scholar 

  37. Pielichowski K, Leszczynska A (2005) Structure-property relationships in polyoxymethylene/thermoplastic polyurethane elastomer blends. J Polym Eng 25(4):359–373

    CAS  Google Scholar 

  38. Sánchez-Soto M, Illescas S, Milliman H, Schiraldi DA, Arostegui A (2010) Morphology and thermomechanical properties of melt-mixed polyoxymethylene/polyhedral oligomeric silsesquioxane nanocomposites. Macromol Mater Eng 295(9):846–858

    Google Scholar 

  39. Yu Y, Qi S, Zhan J, Wu Z, Yang X, Wu D (2011) Polyimide/sepiolite nanocomposite films: preparation, morphology and properties. Mater Res Bull 46:1593–1599

    CAS  Google Scholar 

  40. Kongkhlang T, Tashiro K, Kotaki M (2008) Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc 130(46):15460–15466

    CAS  PubMed  Google Scholar 

  41. Saligheh O, Forouharshad M, Arasteh R, Eslami-Farsani R, Khajavi R, Roudbari BY (2013) The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers. J Polym Res 20:65–71

    Google Scholar 

  42. Iguchi M (1976) Melting and degradation behaviour of needle-like poly (oxymethylene) crystals. Macromol Chem Phys 177(2):549–566

    CAS  Google Scholar 

  43. Hama H, Tashiro K (2003) Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements. Polymer 44(22):6973–6988

    CAS  Google Scholar 

  44. Vilà Ramirez N, Sanchez-Soto M (2011) Enhancement of POM thermooxidation resistance through POSS nanoparticles. Polym Compos 32(10):1584–1592

    Google Scholar 

  45. Torres-Giner S, Pérez-Masiá R (2016) A review on electrospun polymer nanostructure as advanced bioactive platforms. Polym Eng Sci 56(5):500–527

    CAS  Google Scholar 

  46. Ajmal AW, Masood F, Yasin T (2018) Influence of sepiolite on thermal, mechanical and biodegradation properties of poly-3-hydroxybutyrate-co-3-hydroxyvalerate nanocomposites. Appl Clay Sci 156:11–19

    CAS  Google Scholar 

  47. Wei Z, Chen G, Shi Y, Song P, Zhan M (2012) Isothermal crystallization and mechanical properties of poly (butylene succinate)/layered double hydroxide nanocomposites. J Polym Res 19:9930–9940

    Google Scholar 

  48. Liu X, Bai S, Nie M, Wang Q (2012) Effect of blend composition on crystallization behaviour of polyoxymethylene/poly (ethylene oxide) crystalline/crystalline blends. J Polym Res 19:9787–9793

    Google Scholar 

  49. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9(2):177–184

    CAS  Google Scholar 

  50. Coburn N, Douglas P, Kaya D, Gupta J, McNall T (2018) Isothermal and non-isothermal crystallization kinetics of compositesof poly (propylene) and MWCNTs. Adv Ind Eng Polym Res 1(1):99–110

    Google Scholar 

  51. Zeng JB, Zhu QY, Li YD, Qiu ZC, Wang YZ (2010) Unique crystalline/crystalline polymer blends of poly (ethylene succinate) and poly (p-dioxanone): miscibility and crystallization behaviours. J Phys Chem B 114(46):14827–14833

    CAS  PubMed  Google Scholar 

  52. Zhao TH, Yang KL, Zeng RT, Du AK, Wang M, Zeng JB (2016) Crystallization behaviour of poly (sodium 4-styrenesulfonate)-functionalized carbon nanotubes filled poly (ε-caprolactone) nanocomposites. Ind Eng Chem Res 55(7):1881–1889

    CAS  Google Scholar 

  53. Yu J, Qiu Z (2011) Isothermal and nonisothermal cold crystallization behaviours of biodegradable poly (L-lactide)/ Octavinyl -polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 50(22):12579–12586

    CAS  Google Scholar 

  54. Wang J, Hu KH, Xu YF, Hu XG (2008) Structural, thermal, and tribological properties of intercalated polyoxymethylene/molybdenum disulfide nanocomposites. J Appl Polym Sci 110(1):91–96

    CAS  Google Scholar 

  55. Patro TU, Mhalgi MV, Khakhar DV, Misra A (2008) Studies on poly (vinylidene fluoride)-clay nanocomposites: effect of different clay modifiers. Polymer 49(16):3486–3499

    CAS  Google Scholar 

  56. Tannirua M, Yuana Q, KMisra RD (2006) On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites. Polymer 47(6):2133–2146

    Google Scholar 

  57. Friedrich K (1983) Crazing in polymers. Springer-Verlag, Berlin-Heidelberg, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, A., Luo, F., Chen, R. et al. Effects of sepiolite on crystallization behaviors and properties of sepiolite/polyoxymethylene composites. J Polym Res 27, 67 (2020). https://doi.org/10.1007/s10965-020-2012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2012-1

Keywords

Navigation