Skip to main content
Log in

The effect of moisture on the nonlinearly viscoelastic behavior of an epoxy

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The shear and bulk relaxation moduli required to characterize a homogeneous, isotropic, and linearly viscoelastic material were determined using a confined compression experiment and by introducing a new iterative scheme that accounts for the fact that the hoop and radial strains are not step functions. In addition, the coefficients of thermal and hygral expansion of the epoxy being considered were determined along with its diffusive behavior. Fickian diffusion of moisture was confirmed by coupling radial diffusion in an epoxy disk with optical interference measurements of the out-of-plane displacements. These properties are essential components of the modified free-volume model of nonlinear viscoelasticity established by Popelar and Liechti (J. Eng. Mater. Technol. 119:205–210, 1997, Mech. Time-Depend. Mater. 7(2):89–141, 2003). For the nonlinear component of the model, its distortional parameters were evaluated from Arcan pure shear test results at one strain rate and temperature/humidity state. The nonlinear viscoelasticity model was then used to predict the shear stress-strain response under other conditions. The dilatational parameters were extracted from uniaxial tensile test results at one strain rate and temperature humidity state and predictions under other conditions compared favorably with the results from experiments. This exercise adds to a growing list of glassy polymers whose nonlinear stress-strain behavior can be modeled by this modified free-volume model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adolf, D.B., Chambers, R.S., Caruthers, J.M.: Extensive validation of a thermodynamically consistent, nonlinear viscoelastic model for glassy polymers. Polymer 45, 4599–4621 (2004)

    Article  Google Scholar 

  • Arcan, M., Hashin, Z., Voloshin, A.: A method to produce uniform plane stress states with applications to fiber-reinforced materials. Exp. Mech. 18(2), 141–146 (1978)

    Article  Google Scholar 

  • Arzoumanidis, G.A., Liechti, K.M.: Linear viscoelastic property measurement and its significance to some nonlinear viscoelasticity models. Mech. Time-Depend. Mater. 7, 209–250 (2003)

    Article  Google Scholar 

  • Bradshaw, R.D., Brinson, L.C.: A sign control method for fitting and interconverting material functions for linearly viscoelastic solids. Mech. Time-Depend. Mater. 1(1), 85–108 (1997)

    Article  Google Scholar 

  • Canal, L.P., Michaud, V.: Micro-scale modeling of water diffusion in adhesive composite joints. Compos. Struct. 111, 340–348 (2014)

    Article  Google Scholar 

  • Caruthers, J.M., Adolf, D.B., Chambers, R.S., Shrikhande, P.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45, 4577–4597 (2004)

    Article  Google Scholar 

  • Chevellard, G., Ravi-Chandar, K., Liechti, K.: Modeling the nonlinear viscoelastic behavior of polyurea using a distortion modified free volume approach. Mech. Time-Depend. Mater. 16(2), 181–203 (2012). https://doi.org/10.1007/s11043-011-9146-9

    Article  Google Scholar 

  • Cost, T.L., Becker, E.B.: A multidata method of approximate Laplace transform inversion. Int. J. Numer. Methods Eng. 2(2), 207–219 (1970)

    Article  Google Scholar 

  • Doolittle, A.K.: Studies in Newtonian flow II: the dependence of the viscosity of liquids on free-space. J. Appl. Mech. 22, 1471–1475 (1951)

    Google Scholar 

  • Drozdov, A.D.: Accretion of ageing, viscoelastic bodies under conditions of volume solidification. Mech. Solids 23, 98–103 (1988)

    Google Scholar 

  • Emri, I., Tschoegl, N.: Generating line spectra from experimental responses. Part I: relaxation modulus and creep compliance. Rheol. Acta 32(3), 311–322 (1993)

    Article  Google Scholar 

  • Ferreira Vieira de Mattos, D.: Effect of moisture on mixed-mode traction-separation relations of a glass/epoxy interface. PhD Dissertation, University of Texas Austin (2017)

  • Fillers, R.W., Tschoegl, N.W.: The effect of pressure on the mechanical properties of polymers. Trans. Soc. Rheol. 21, 51–100 (1977)

    Article  Google Scholar 

  • Fujita, H.: Diffusion in polymer-diluent systems. In: Fortschritte Der Hochpolymeren-Forschung, pp. 1–47. Springer, Berlin (1961)

    Google Scholar 

  • Guth, E., Wack, P.E., Anthony, R.L.: Significance of the equation for state for rubber. J. Appl. Phys. 17, 347–351 (1946)

    Article  Google Scholar 

  • Knauss, W.G., Emri, I.: Non-linear viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128 (1981)

    Article  Google Scholar 

  • Knauss, W.G., Emri, I.: Volume change and the nonlinearly thermo-viscoelastic constitution of polymers. Polym. Eng. Sci. 27(21), 86–100 (1987)

    Article  Google Scholar 

  • Knauss, W.G., Kenner, V.H.: On the hygrothermomechanical characterization of polyvinyl acetate. J. Appl. Phys. 51(10), 5131–5136 (1980)

    Article  Google Scholar 

  • Leaderman, H.: Elastic and Creep Properties of Filamentous Materials and Other High Polymers. The Textile Foundation, Washington (1943)

    Google Scholar 

  • Losi, G.U., Knauss, W.G.: Free volume theory and nonlinear thermoviscoelasticity. Polym. Eng. Sci. 32(8), 542–557 (1992)

    Article  Google Scholar 

  • Lustig, S.R., Shay, R.M. Jr, Caruthers, J.M.: Thermodynamic constitutive equations for materials with memory on a material time scale. J. Rheol. 40(1), 69–106 (1996)

    Article  MathSciNet  Google Scholar 

  • Ma, Z., Ravi-Chandar, K.: Confined compression: a stable homogeneous deformation for constitutive characterization. Exp. Mech. 40, 38–45 (2000)

    Article  Google Scholar 

  • Makhmutov, I., Sorina, T., Suvorova, Y.V., Surgucheva, A.: Failure of composites taking into account the effects of temperature and moisture. Mech. Compos. Mater. 19(2), 175–180 (1983)

    Article  Google Scholar 

  • Masurovsky, E.B., Bunge, R.P.: Fluoroplastic coverslips for long-term nerve tissue culture. Stain Technol. 43(3), 161–165 (1968)

    Article  Google Scholar 

  • Medvedev, G.A., Caruthers, J.M.: A comparison of constitutive descriptions of the thermo-mechanical behavior of polymeric glasses. In: Roth, C.B. (ed.) Polymer Glasses. Taylor and Francis, London (2017)

    Google Scholar 

  • Odegard, G., Bandyopadhyay, A.: Physical aging of epoxy polymers and their composites. J. Polym. Sci., Part B, Polym. Phys. 49(24), 1695–1716 (2011)

    Article  Google Scholar 

  • Park, S.J., Liechti, K.M., Roy, S.: Simplified bulk experiments and hygrothermal nonlinear viscoelasticity. Mech. Time-Depend. Mater. 8, 303–344 (2004)

    Article  Google Scholar 

  • Popelar, C.F., Liechti, K.M.: Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive. J. Eng. Mater. Technol. 119, 205–210 (1997)

    Article  Google Scholar 

  • Popelar, C.F., Liechti, K.M.: A distortion-modified free volume theory for nonlinear viscoelastic behavior. Mech. Time-Depend. Mater. 7(2), 89–141 (2003)

    Article  Google Scholar 

  • Schapery, R.A.: A simple collocation method for fitting viscoelastic models to experimental data. In: GALCIT Solid Mechanics Reports, vol. SM-61-23A. California Institute of Technology (1962)

  • Schapery, R.A.: Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media. J. Appl. Phys. 35, 1451–1465 (1964)

    Article  MathSciNet  Google Scholar 

  • Schapery, R.A.: A method of viscoelastic stress analysis using elastic solutions. J. Franklin Inst. 279, 268–289 (1965)

    Article  MathSciNet  Google Scholar 

  • Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  • Schapery, R.A.: Nonlinear facture analysis of viscoelastic composite materials based on a generalized j integral theory. In: Akasak, K.K.T. (ed.) Proc. Japan-U.S. Conference Composite Materials, Tokyo (1981)

    Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Tschoegl, N.W., Knauss, W.G., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Article  Google Scholar 

  • Viktorova, I.: Description of the delayed fracture of inelastic materials taking temperature into account. Mech. Compos. Mater. 19(1), 35–38 (1983)

    Article  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Liechti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The confined compression tests for the bulk and shear relaxation moduli were conducted at 20 °C, 26.4 °C, 29.5 °C, 35 °C, 40 °C, 45 °C, 50 °C, 55 °C, 60 °C, and 70 °C. The relaxation data at each temperature are shown in Fig. 17.

Fig. 17
figure 17

Data obtained from confined compression tests prior to time–temperature shifting: (a) bulk and (b) shear relaxation moduli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira de Mattos, D.F., Huang, R. & Liechti, K.M. The effect of moisture on the nonlinearly viscoelastic behavior of an epoxy. Mech Time-Depend Mater 24, 435–461 (2020). https://doi.org/10.1007/s11043-020-09446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-020-09446-0

Keywords

Navigation