Skip to main content
Log in

Metal-free hydroxylation of tertiary ketones under intensified and scalable continuous flow conditions

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

An intensified and scalable continuous flow process is presented for the hydroxylation of enolizable tertiary ketones. The procedure relies on molecular oxygen, metal-free conditions and a low toxicity solvent (DMSO). The reaction is optimized on the microfluidic scale with a model ketone substrate (isobutyrophenone) and next extended to a small library of structurally diverse enolizable ketones. High conversion and selectivity are achieved under extremely short residence time. A DFT computational study provides insights on the mechanism and selectivity on various substrates. The scalability of the hydroxylation step is next assessed in a commercial pilot scale continuous flow SiC reactor, hence providing up to 12.5 kg per day of industrially relevant α-ketols with applications ranging from Type I radical photoinitiators to intermediates for the preparation of active pharmaceutical ingredients.

Details of the Corning® Advanced-Flow™ G1 SiC reactor (Courtesy of Corning®) utilized for the intensified continuous flow hydroxylation of tertiary ketones with molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stevens CL, Elliott RD, Winch BL (1963). J Am Chem Soc 85:1464–1470

    CAS  Google Scholar 

  2. Stevens CL, Thuillier A, Daniher FA (1965). J Org Chem 30:2962–2966

    CAS  Google Scholar 

  3. Stevens CL, Klundt IL, Munk ME, Pillai MD (1965). J Org Chem 30:2967–2972

    CAS  Google Scholar 

  4. Stevens CL, Hanson HT, Taylor KG (1966). J Am Chem Soc 88:2769–2774

    CAS  Google Scholar 

  5. Stevens CL, Ash AB, Thuillier A, Amin JH, Balys A, Dennis WE, Dickerson JP, Glinski RP, Hanson HT, Pillai MD, Stoddard JW (1966). J Org Chem 31:2593–2601

    CAS  PubMed  Google Scholar 

  6. Stevens CL, Thuillier A, Taylor KG, Daniher FA, Dickerson JP, Hanson HT, Nielsen NA, Tikotkar NA, Weier RM (1966). J Org Chem 31:2601–2607

    CAS  Google Scholar 

  7. Stevens CL, Glenn FE, Pillai PM (1973). J Am Chem Soc 95:6301–6308

    CAS  Google Scholar 

  8. Paquette LA, Hofferberth JE (2004) The α-Hydroxy ketone (α-Ketol) and related rearrangements in organic reactions. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  9. Rao HSP, Vijjapu S (2015). Tetrahedron 71:8391–8406

    CAS  Google Scholar 

  10. Kassin VEH, Gérardy R, Toupy T, Collin D, Salvadeo E, Toussaint F, Van Hecke K, Monbaliu JCM (2019). Green Chem 21:2952–2966

    CAS  Google Scholar 

  11. Uddin MJ, Wilson AJ, Crews BC et al (2019). ACS Omega 4:9251–9261

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Steindl J, Koch T, Moszner N, Gorsche C (2017). Macromolecules 50:7448–7457

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006). J Am Chem Soc 128:15980–15981

    CAS  PubMed  Google Scholar 

  14. Marin ML, McGilvray KL, Scaiano JC (2008). J Am Chem Soc 130:16572–16584

    CAS  PubMed  Google Scholar 

  15. Wasserman HH, Lipshutz BH (1975). Tetrahedron Lett 21:1731–1734

    Google Scholar 

  16. Huang JQ, Nairoukh Z, Marek I (2018). Eur J Org Chem 2018:614–618

    CAS  Google Scholar 

  17. Liang Y, Wu K, Song S, Li X, Huang X, Jiao N (2015). Org Lett 17:876–879

    CAS  PubMed  Google Scholar 

  18. Wei WT, Zhu WM, Shao Q et al (2018). ACS Sustain Chem Eng 6:8029–8033

    CAS  Google Scholar 

  19. Chuang GJ, Wang W, Lee E, Ritter T (2011). J Am Chem Soc 133:1760–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu S, Wang G, Xu F et al (2018). J Nat Prod 81:1055–1059

    CAS  PubMed  Google Scholar 

  21. Liang YF, Jiao N (2014). Angew Chem Int Ed 53:548–552

    CAS  Google Scholar 

  22. Chaudhari MB, Sutar Y, Malpathak S et al (2017). Org Lett 19:3628–3631

    CAS  PubMed  Google Scholar 

  23. Sim SBD, Wang M, Zhao Y (2015). ACS Catal 5:3609–3612

    CAS  Google Scholar 

  24. Rahman MT, Nishino H (2003). Org Lett 5:2887–2890

    CAS  PubMed  Google Scholar 

  25. Krabbe SW, Do DT, Johnson JS (2012). Org Lett 14:5932–5935

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Giarrusso J, Do DT, Johnson JS (2017). Org Lett 19:3107–3110

    CAS  PubMed  Google Scholar 

  27. Bisht GS, Chaudhari MB, Gupte VS, Gnanaprakasam B (2017). ACS Omega 2:8234–8252

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gandhi H, O’Reilly K, Gupta MK et al (2017). RSC Adv 7:19506–19556

    CAS  Google Scholar 

  29. Liu CH, Wang Z, Xiao LY et al (2018). Org Lett 20:4862–4866

    CAS  PubMed  Google Scholar 

  30. Riahi A, Muzart J, Abe M, Hoffmann N (2013). New J Chem 37:2245–2249

    CAS  Google Scholar 

  31. Lian M, Li Z, Du J et al (2010). Eur J Org Chem:6525–6530

  32. Yang F, Zhao J, Tang X et al (2017). Org Lett 19:448–451

    CAS  PubMed  Google Scholar 

  33. Tang X-F, Zhao J-N, Wu Y-F et al (2019). Org Biomol Chem 17:7938–7942

    CAS  PubMed  Google Scholar 

  34. Rubottom GM, Gruber JM (1978). J Org Chem 43:1599–1602

    CAS  Google Scholar 

  35. Basdevant B, Legault CY (2015). J Org Chem 80:6897–6902

    CAS  PubMed  Google Scholar 

  36. Hone CA, Kappe CO (2019). Top Curr Chem 377:2

    Google Scholar 

  37. Gérardy R, Emmanuel N, Toupy T, Kassin VEH, Tshibalonza NN, Schmitz M, Monbaliu JCM (2018). Eur J Org Chem:2301–2351

  38. Emmanuel N, Mendoza C, Winter M, Horn C, Vizza A, Dreesen L, Heinrichs B, Monbaliu JCM (2017). Org Process Res Dev 21:1435–1438

    CAS  Google Scholar 

  39. Richardson WH, Hodge VF, Stiggall DL et al (1974). J Am Chem Soc 96:6652–6657

    CAS  Google Scholar 

  40. Sawaki Y, Ogata Y (1975). J Am Chem Soc 97:6983–6989

    CAS  Google Scholar 

  41. Sawaki Y, Ogata Y (1976). J Org Chem 98:7324–7327

    CAS  Google Scholar 

  42. Eustis S, El-Sayed MA (2006). Chem Soc Rev 35:209–217

    CAS  PubMed  Google Scholar 

  43. Daniel MC, Astruc D (2004). Chem Rev 104:293–346

    CAS  PubMed  Google Scholar 

  44. Saha K, Agasti SS, Kim A, Li X, Rotello VM (2012). Chem Rev 112:2739–2779

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou W, Gao X, Liu D, Chen X (2015) 115:10575–10636

  46. Turkevich J, Stevenson PC, Hillier J (1951). Faraday Soc 11:55–75

    Google Scholar 

  47. Zhao P, Li N, Astruc D (2013). Coord Chem Rev 257:638–665

    CAS  Google Scholar 

  48. De Freitas LF, Varca GHC, Batista JGDS, Lugão AB (2018). Nanomaterials 8:939

    Google Scholar 

  49. McGilvray KL, Fasciani C, Bueno-Alejo CJ, Schwartz-Narbonne R, Scaiano JC (2012). Langmuir 28:16148–16155

    CAS  PubMed  Google Scholar 

  50. Scaiano JC, Billone P, Gonzalez CM, Maretti L, Marin ML, McGilvray KL, Yuan N (2009). Pure Appl Chem 81:635–647

    CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (Revision D.01). Gaussian Inc., Wallingford CT

    Google Scholar 

Download references

Acknowledgments

This work was supported by the F.R.S.-FNRS (Fonds National de la Recherche Scientifique, Belgium), the F.R.I.A.-FNRS (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium) and the University of Liège (Welcome Grant WG-13/03, JCMM). VEHK and TT are F.R.I.A.-FNRS PhD student fellows. Computational resources were provided by the “Consortium des Équipements de Calcul Intensif” (CÉCI), funded by the “Fonds de la Recherche Scientifique de Belgique” (F.R.S.-FNRS) under Grant No. 2.5020.11. François Toussaint worked on the preliminary stage of this project within the frame of his Master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe M. Monbaliu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Development of a hydroxylation process for enolizable tertiary ketones that relies on metal-free conditions and molecular oxygen.

Identification of the critical process parameters that affect conversion and selectivity through DFT computations.

Intensification of the hydroxylation conditions under scalable conditions using a commercial pilot scale SiC mesofluidic reactor.

Preparation of industrially relevant α-ketols and illustration of a potential application for the photogeneration of radicals and the preparation of gold nanoparticles.

Electronic supplementary material

ESM 1

(DOCX 10638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassin, VE.H., Toupy, T., Petit, G. et al. Metal-free hydroxylation of tertiary ketones under intensified and scalable continuous flow conditions. J Flow Chem 10, 167–179 (2020). https://doi.org/10.1007/s41981-019-00073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00073-6

Keywords

Navigation