Skip to main content

Advertisement

Log in

Physicochemical and antifungal properties of waterborne polymer nanoparticles synthesized with caffeine

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, caffeine was used as a natural additive in the emulsion polymerization of methyl methacrylate with cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS). Mean particle size and ζ-potential of the particles, glass transition temperature, and molecular weight of polymer chains were not affected by caffeine. However, caffeine improved considerably the colloidal stability of polymer dispersions at ionic strength of 1.0 mol L−1 NaCl. Fourier transform infrared vibrational spectra in the attenuated total reflectance mode (FTIR-ATR) of PMMA synthesized with CTAB or SDS in the presence of caffeine showed shifts of caffeine bands assigned to isolated and conjugated carbonyl groups to higher wavenumbers, indicating favorable interactions. Density functional theory (DFT) calculations revealed interactions between the negatively charged sulfate and the caffeine imidazole ring and between positively charged ammonium group and the isolated carbonyl of the caffeine. Such interactions are responsible for the improved colloidal stability of polymer dispersions synthesized with caffeine. Cell viability assays showed that adding caffeine at 26 × 10−3 mol L−1 in the polymerization reaction is enough to prevent C. albicans growth in waterborne polymer dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Capek I (2001) On the role of oil-soluble initiators in the radical polymerization of micellar systems. Adv Colloid Interf Sci 91:295–334

    Article  CAS  Google Scholar 

  2. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  CAS  Google Scholar 

  3. Thickett SC, Gilbert RG (2007) Emulsion polymerization: state of the art in kinetics and mechanisms. Polymer 48:6965–6991

    Article  CAS  Google Scholar 

  4. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  Google Scholar 

  5. Makvandi P, Gu JT, Zare EN, Ashtari K, Moeini A, Tay FR, Niu L (2019) Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater. https://doi.org/10.1016/j.actbio.2019.09.025

  6. Yang Y, Cai Z, Huang Z, Tang X, Zhang X (2017) Antimicrobial cationic polymers: from structural design to functional control. Polymer J 50:33–44

    Article  Google Scholar 

  7. Ergene C, Yasuhara K, Palermo EF (2018) Biomimetic antimicrobial polymers: recent advances in molecular design. Polym Chem 9:2407–2427

    Article  CAS  Google Scholar 

  8. Carmona-Ribeiro AM, Carrasco LDM (2013) Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14:9906–9946

    Article  Google Scholar 

  9. Blachechen LS, Fardim P, Petri DFS (2014) Multifunctional cellulose beads and their interaction with gram positive Bacteria. Biomacromolecules 15:3440–3448

    Article  CAS  Google Scholar 

  10. Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH (2014) Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 34:340–437

    Article  Google Scholar 

  11. Wais U, Nawrath MM, Jackson AW, Zhang H (2018) Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity. Colloid Polym Sci 296:951–960

    Article  CAS  Google Scholar 

  12. Reeder NL, Xu J, Youngquist RS, Schwartz J, Rust RC, Saunders CW (2011) The antifungal mechanism of action of zinc pyrithione. Br J Dermatol 165:9–12

    Article  CAS  Google Scholar 

  13. Calo JR, Crandall PG, O’Bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems—a review. Food Control 54:111–119

    Article  CAS  Google Scholar 

  14. Krepker M, Prinz-Setter O, Shemesh R, Vaxman A, Alperstein D, Segal E (2018) Antimicrobial carvacrol-containing polypropylene films: composition. Structure and Function Polymers. https://doi.org/10.3390/polym10010079

  15. Al Reef T, Ghanem E (2018) Caffeine: well-known as psychotropic substance, but little as immunomodulator. Immunobiology 223:818–825

    Article  Google Scholar 

  16. Raut JS, Chauhan NM, Shinde RB, Karuppayil SM (2013) Inhibition of planktonic and biofilm growth of Candida albicans reveals novel antifungal activity of caffeine. J Med Plants Res 7:777–782

    Google Scholar 

  17. Sledz W, Los E, Paczek A, Rischka J, Motyka A, Zoledowska S, Piosik J, Lojkowska E (2015) Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Bioch Pol 62:605–612

    Article  CAS  Google Scholar 

  18. Burgess SK, Lee JS, Mubarak CR, Kriegel MR, Koros WJ (2015) Caffeine antiplasticization of amorphous poly(ethylene terephthalate): effects on gas transport, thermal, and mechanical properties. Polymer 65:34–44

    Article  CAS  Google Scholar 

  19. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55:678–705

    Article  CAS  Google Scholar 

  20. Naves AF, Palombo RR, Carrasco LDM, Carmona-Ribeiro AN (2013) Antimicrobial particles from emulsion polymerization of methyl methacrylate in the presence of quaternary ammonium surfactants. Langmuir 29:9677–9684

    Article  CAS  Google Scholar 

  21. Sanches LM, Petri DFS, Carrasco LDM, Carmona-Ribeiro AM (2015) The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate). J Nanobiotechnol 13:1–13. https://doi.org/10.1186/s12951-015-0123-3

    Article  CAS  Google Scholar 

  22. Galvão C, Sanches L, Mathiazzi B, Ribeiro R, Petri DFS, Carmona-Ribeiro AM (2018) Antimicrobial coatings from hybrid nanoparticles of biocompatible and antimicrobial polymers. Int J Mol Sci. https://doi.org/10.3390/ijms19102965

  23. Gilbert R (1995) Emulsion polymerization: a mechanistic approach. Academic Press, London

    Google Scholar 

  24. Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2:123–131

    Article  CAS  Google Scholar 

  25. Berg JC (2010) An introduction to interfaces and colloids: the bridge to nanosciences. World Scientific, Singapore

    Google Scholar 

  26. Castro LBR, Soares KV, Naves AF, Carmona-Ribeiro AM, Petri DFS (2004) Synthesis of stable polystyrene and poly(methyl methacrylate) particles in the presence of carboxymethyl cellulose. Ind Eng Chem Res 43:7774–7779

    Article  CAS  Google Scholar 

  27. Gaussian 09, Revision A.02, Frisch MJ et al. (2016) Gaussian, Inc., Wallingford CT

  28. Vieira DB, Carmona-Ribeiro AM (2006) Cationic lipids and surfactants as antifungal agents: mode of action. J Antimicrob Chemother 58:760–767

    Article  CAS  Google Scholar 

  29. Chen W, Liu W, Liu Y, Bang Y, Kim H (2010) Synthesis of PMMA and PMMA/PS nanoparticles by microemulsion polymerization with a new vapor monomer feeding system. Colloids Surf A Physicochem Eng Asp 364:145–150

    Article  CAS  Google Scholar 

  30. Porter CE, Blum FD (2000) Thermal characterization of PMMA thin films using modulated differential scanning calorimetry. Macromolecules 33:7016–7020

    Article  CAS  Google Scholar 

  31. Johnson NO, Light TP, MacDonald G, Zhang Y (2017) Anion−caffeine interactions studied by 13C and 1H NMR and ATR−FTIR spectroscopy. J Phys Chem B 121:1649–1659

    Article  CAS  Google Scholar 

  32. Furtado LM, Hilamatu KCP, Balaji K, Ando RA, Petri DFS (2020) Miscibility and sustained release of drug from cellulose acetate butyrate/caffeine films. J Drug Deliv Sci Technol 55:101472

    Article  CAS  Google Scholar 

  33. Tavagnacco L, Schnupf U, Mason PE, Saboungi M-L, Cesaro A, Brady JW (2011) Molecular dynamics simulation studies of caffeine aggregation in aqueous solution. J Phys Chem B 115:10957–10966

    Article  CAS  Google Scholar 

  34. Al-Maaieh A, Flanagan DR (2002) Salt effects on caffeine solubility, distribution, and self-association. J Pharm Sci 91:1000–1008

    Article  CAS  Google Scholar 

  35. Dário AF, Macia HB, Petri DFS (2012) Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight. Thin Solid Films 524:185–190

    Article  Google Scholar 

  36. Goldschmidt A, Streitberger HJ (2007) BASF handbook on basics of coating technology2nd edn. Vincentz Network, Hannover, pp 352–360

    Google Scholar 

  37. Pereira EMA, Kosaka PM, Rosa H, Vieira DB, Kawano Y, Petri DFS, Carmona-Ribeiro AM (2008) Hybrid materials from intermolecular associations between cationic lipid and polymers. J Phys Chem B 112:9301–9310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge financial support from Brazilian Funding Agency “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq Grants 132550/2018-0, 171250/2017, 306848/2017, 421014/2018, and 302352/2014-7). We also thank LNNano-CNPEM (Project TEM 24370, Campinas, Brazil) for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Freitas Siqueira Petri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calheiros, T.F., Furtado, L.M., Carmona-Ribeiro, A.M. et al. Physicochemical and antifungal properties of waterborne polymer nanoparticles synthesized with caffeine. Colloid Polym Sci 298, 341–353 (2020). https://doi.org/10.1007/s00396-020-04615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04615-6

Keywords

Navigation