Skip to main content
Log in

Comparative Study of AC and DC Solvers Based on Current and Power Distributions in a Submerged Arc Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work discusses 3D models of current distribution in a three-phase submerged arc furnace that contains several components, such as electrodes, central arcs, craters, crater walls, and side arcs that connect electrodes and crater walls. A complete modeling approach requires time-dependent modeling of the AC electromagnetic fields and current distribution, while an approximation using a static DC approach enables a significant reduction in computational time. By comparing results for current and power distributions inside an industrial submerged arc furnace from the AC and DC solvers of the ANSYS Maxwell module, the merits and limitations of using the simpler and faster DC approach are estimated. The conclusion is that although effects such as skin effect and proximity are lost with the DC approach, the difference in the location of energy dissipation is within a 6 pct margin. The given inaccuracies introduced with an assumption about furnace configuration and physical properties are significantly more important for the overall result. Unless inductive effects are of particular interest, DC may often be sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [11], with permission

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Tranell, M. Andersson, E. Ringdalen, O. Ostrovski, and J.J. Stenmo: INFACON XII, 2010, pp. 709–15.

  2. M. Tangstad, M. Ksiazek, and J.E. Andersen: Silicon for the Chemical and Solar Industry XII, 2014, Trondheim, Norway, June 24–27.

  3. E.H. Myrhaug: Ph.D. thesis, NTNU, 2013.

  4. 4.A. S. Hauksdottir, A. Gestsson, and A. Vesteinsson: Control Engineering Practice, 2002, vol. 20, pp. 457-463.

    Article  Google Scholar 

  5. M. Krokstad: MSc-thesis NTNU, 2014.

  6. J. Vangskåsen: MSc. thesis, NTNU, 2012.

  7. H. Mølnås: Investigation of SiO condensate formation in the silicon process, Project report in TMT 4500, NTNU, Norway, 2010.

  8. J. Nell and C. Joubert C: INFACON XIII, 2013, pp. 265–71.

  9. H. Palsson and M. Jonsson: Finite element analysis of proximity effects in Soderberg electrodes. https://www.hi.is/~magnusj/ritverk/proximit.pdf, Accessed 28 Oct 2019.

  10. P.D. Barba, F. Dughiero, M. Dusi, M. Forzan, M. E. Mognaschi, M. Paioli, and E. Siena: Int. J. Appl. Electromagnetics and Mechanics, 2012, vol. 20, pp. 555-561

    Article  Google Scholar 

  11. Y.A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir: J. S. Afr. Inst. Min. Metall., 2018, Ser. 6, vol. 118, pp. 595–00.

  12. Y.A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir: in CFD Modeling and Simulation in Materials Processing, The Minerals, Metals & Materials Series, L. Nastac, K. Pericleous, A. Sabau, L. Zhang, B. Thomas, eds., Springer, Cham, 2018, pp. 175–85.

  13. Y.A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir: in Computational Science—ICCS 2018. ICCS 2018. Lecture Notes in Computer Science, Y. Shi et al. eds., vol. 10861. Springer, Cham, pp. 518–27.

  14. Y.A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir: IEEE MTT-S International Conference on Numerical and Electromagnetic and Multiphysics Modeling and Optimization, Reykjavik, Iceland, 08-11 Aug 2018.

  15. Y.A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir: Materials Processing Fundamentals. TMS 2019, 2019.

  16. 16.E. Scheepers, Y. Yang, M.A. Reuter, and A.T. Adema: Minerals Engineering, 2006, vol. 19, pp. 309-317

    Article  CAS  Google Scholar 

  17. 17.E. Scheepers, A.T. Adema, Y. Yang, and M.A. Reuter: Minerals Engineering, 2006, vol. 19, pp. 1115-1125.

    Article  CAS  Google Scholar 

  18. E.V. Herland, M. Sparta, and S.A. Halvorsen: J. S. Afr. Inst. Min. Metall, 2018, Ser. 6, vol. 118, pp. 607–18.

  19. M. Dhainaut: INFACON X, 204, pp. 605–13.

  20. J.J. Bezuidenhout, J.J. Eksteen, and S.M. Bardshaw: Minerals Engineering, 2009, Ser. 11, vol. 22, pp. 995–06. https://doi.org/10.1016/j.mineng.2009.03.009

    Article  CAS  Google Scholar 

  21. M. M. Moghadam, S. H. Seyedein, and M.R. Aboutalebi: J. Iron Steel Res. Int., 2010, vol. 17, pp. 14–18

    Article  CAS  Google Scholar 

  22. D. Darmana, J.E. Olsen, K. Tang, and E. Ringldalen: The Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 10–12 Dec 2012.

  23. 23.Z. Wang, N.H. Wang and T. Li: J. Mat. Pro. Tec, 2011, vol. 211, pp. 388-395.

    Article  CAS  Google Scholar 

  24. 24.Z. Wang, Y. Fu, N. Wang, and L. Feng: J. Mat. Pro. Tec, 2014, vol. 214, pp. 2284-91. http://dx.doi.org/10.1016/j.jmatprotec.2014.04.033

    Article  CAS  Google Scholar 

  25. Maxwell, ver. 18.0 ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, 2018.

  26. G.A. Saevarsdottir, J. Bakken, V. Sevastyanenko, and Gu Liping: INFACON IX, 2001, pp. 253–63.

  27. 27.A.Schei, J.K.Tuset, and H.Tveit: Production of high silicon alloys, Tapir Forlag, Trondheim, 1998.

    Google Scholar 

  28. G. Saevarsdotti, and J.A. Bakken: INFACON XII, 2010, pp. 717–28.

  29. G.A, Saevarsdottir: Ph.D. thesis, NTNU, 2002.

  30. 30.H. Sasaki, A. Ikari, K. Terashima, and S. Kimura: Jpn. J. Appl. Phys, 1995, vol. 34, pp. 3426-31. https://doi.org/10.1143/JJAP.34.3426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Icelandic Technology development fund is acknowledged for their funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Tesfahunegn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfahunegn, Y.A., Magnusson, T., Tangstad, M. et al. Comparative Study of AC and DC Solvers Based on Current and Power Distributions in a Submerged Arc Furnace. Metall Mater Trans B 51, 510–518 (2020). https://doi.org/10.1007/s11663-020-01794-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01794-z

Navigation