Skip to main content
Log in

Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lipid bodies are dynamic organelles of photosynthetic microalgae that can be used as the third generation resources for biofuel production. Biosynthesis of lipids can be influenced by different signalling processes. Visualisation of these processes can provide useful information about the fate and associated roles of lipid molecules in different biological systems. In photosynthetic organisms, however, studies of calcium ediated lipid biosynthesis is bottlenecked due to the limitation of proper and efficient technologies, which also include visualisation techniques. Currently, most studies to visualise lipid droplets in vivo have used traditional dyes, and proper visualisation of lipid drops is hindered by dye-specific limitations. This hurdle could be overcome by using recently developed aggregation-induced emission biooprobes. This review reveals current knowledge gaps in the studies of lipid drops and calcium ions in microalgae, as calcium signaling is important secondary messenger to detect a wide variety of environmental stimuli in plant and animal cells. To obtain insight into the mechanisms of these processes, the merits and demerits of currently available visualisation techniques for lipid drops and calcium are also detailed. Finally, opportunities and possibilities are proposed to recommend further improvement of techniques for detecting the role of calcium during lipid formation in microalgae for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. J Appl Phycol, 2017, 29: 949–982

    CAS  PubMed  Google Scholar 

  2. Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J. Curr Opin Biotech, 2012, 23: 352–363

    CAS  PubMed  Google Scholar 

  3. Liu B, Benning C. Curr Opin Biotech, 2013, 24: 300–309

    CAS  PubMed  Google Scholar 

  4. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Plant J, 2008, 54: 621–639

    CAS  PubMed  Google Scholar 

  5. Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. Plant Biotechnol J, 2016, 14: 1649–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Biotechnol Biofuels, 2018, 11: 272

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang AHC. Plant Physiol, 2018, 176: 1894–1918

    PubMed  Google Scholar 

  8. Lin IP, Jiang PL, Chen CS, Tzen JTC. Plant Physiol Biochem, 2012, 61: 80–87

    CAS  PubMed  Google Scholar 

  9. Moellering ER, Benning C. Eukaryotic Cell, 2010, 9: 97–106

    CAS  PubMed  Google Scholar 

  10. Goold H, Beisson F, Peltier G, Li-Beisson Y. Plant Cell Rep, 2015, 34: 545–555

    CAS  PubMed  Google Scholar 

  11. Graham IA. Annu Rev Plant Biol, 2008, 59: 115–142

    CAS  PubMed  Google Scholar 

  12. Chapman KD, Dyer JM, Mullen RT. J Lipid Res, 2012, 53: 215–226

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Walther TC, Farese Jr RV. Annu Rev Biochem, 2008, 81: 687–714

    Google Scholar 

  14. Welte MA. Curr Biol, 2015, 25: R470–R481

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV Jr. J Lipid Res, 2008, 49: 2283–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS. J Biol Chem, 2012, 287: 15811–15825

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li-Beisson Y, Beisson F, Riekhof W. Plant J, 2015, 82: 504–522

    CAS  PubMed  Google Scholar 

  18. Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD. Microb Cell Fact, 2011, 10: 91

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR. Plant J, 2015, 81: 611–624

    CAS  PubMed  Google Scholar 

  20. Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS. Plant Cell, 2014, 26: 1410–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu JK. Cell, 2016, 167: 313–324

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heldin CH, Lu B, Evans R, Gutkind JS. Cold Spring Harb Perspect Biol, 2016, 8: a005900

    PubMed  PubMed Central  Google Scholar 

  23. Newton AC, Bootman MD, Scott JD. Cold Spring Harb Perspect Biol, 2016, 8: a005926

    PubMed  PubMed Central  Google Scholar 

  24. Chen H, Zhang Y, He C, Wang Q. Plant Cell Physiol, 2014, 55: 634–644

    CAS  PubMed  Google Scholar 

  25. Gao Q, Goodman JM. Front Cell Dev Biol, 2015, 3: 49

    PubMed  PubMed Central  Google Scholar 

  26. Guo Y, Cordes KR, Farese RV, Walther TC. J Cell Sci, 2009, 122: 749–752

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohsaki Y, Suzuki M, Fujimoto T. Chem Biol, 2014, 21: 86–96

    CAS  PubMed  Google Scholar 

  28. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    CAS  PubMed  Google Scholar 

  29. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 381: 1740–1741

    Google Scholar 

  30. Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Sci China Chem, 2019, 62: 1090–1098

    CAS  Google Scholar 

  31. Zhou Y, Hua J, Tang BZ, Tang Y. Sci China Chem, 2019, 62: 1312–1332

    CAS  Google Scholar 

  32. Zhou Y, Liu H, Zhao N, Wang Z, Michael MZ, Xie N, Tang BZ, Tang Y. Sci China Chem, 2018, 61: 892–897

    CAS  Google Scholar 

  33. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Front Bioeng Biotechnol, 2015, 2: 90

    PubMed  PubMed Central  Google Scholar 

  34. Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari ON, Das P, Gayen K, Mandal MK, Halder GN. 3 Biotech, 2017, 7: 99

    PubMed  PubMed Central  Google Scholar 

  35. Silva CSP, Silva-Stenico ME, Fiore MF, de Castro HF, Da Rós PCM. Algal Res, 2014, 3: 1–7

    Google Scholar 

  36. Feng P, Deng Z, Hu Z, Wang Z, Fan L. Bioresource Tech, 2014, 162: 115–122

    CAS  Google Scholar 

  37. Beevi US, Sukumaran RK. J Appl Phycol, 2015, 27: 141–147

    CAS  Google Scholar 

  38. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Biotechnol Biofuels, 2012, 5: 18

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lam MK, Lee KT, Mohamed AR. Biotech Adv, 2010, 28: 500–518

    CAS  Google Scholar 

  40. Zhang X, Rong J, Chen H, He C, Wang Q. Front Energy Res, 2014, 2: 32

    CAS  Google Scholar 

  41. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Eukaryotic Cell, 2009, 8: 1856–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  42. MacDougall KM, McNichol J, McGinn PJ, O’Leary SJB, Melanson JE. Anal Bioanal Chem, 2011, 401: 2609–2616

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Griffiths MJ, van Hille RP, Harrison STL. J Appl Phycol, 2012, 24: 989–1001

    CAS  Google Scholar 

  44. Markou G, Nerantzis E. Biotech Adv, 2013, 31: 1532–1542

    CAS  Google Scholar 

  45. Thiam AR, Beller M. J Cell Sci, 2017, 130: 315–324

    CAS  PubMed  Google Scholar 

  46. Goodson C, Roth R, Wang ZT, Goodenough U. Eukaryotic Cell, 2011, 10: 1592–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huerlimann R, Heimann K. Crit Rev Biotech, 2013, 33: 49–65

    CAS  Google Scholar 

  48. Valledor L, Furuhashi T, Recuenco-Muñoz L, Wienkoop S, Weckwerth W. Biotechnol Biofuels, 2014, 7: 171

    PubMed  PubMed Central  Google Scholar 

  49. Fontana A, d’Ippolito G, Cutignano A, Miralto A, Ianora A, Romano G, Cimino G. Pure Appl Chem, 2007, 79: 481–490

    CAS  Google Scholar 

  50. d’ppolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A, Fontana A. Biochim Biophysica Acta, 2004, 1686: 100–107

    Google Scholar 

  51. Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS. Plant Cell, 2013, 25: 4305–4323

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goncalves EC, Johnson JV, Rathinasabapathi B. Planta, 2013, 238: 895–906

    CAS  PubMed  Google Scholar 

  53. Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Shachar-Hill Y, Hicks LM, Gang DR. J Exp Bot, 2015, 66: 4551–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fuchs B, Süss R, Teuber K, Eibisch M, Schiller J. J Chromatogr A, 2011, 1218: 2754–2774

    CAS  PubMed  Google Scholar 

  55. Fisk HL, West AL, Childs CE, Burdge GC, Calder PC. J Vis Exp, 2014, 85: 51445

    Google Scholar 

  56. Satomi Y, Hirayama M, Kobayashi H. J Chromatogr B, 2017, 1063: 93–100

    CAS  Google Scholar 

  57. Ishihara M, Kujiraoka T, Iwasaki T, Nagano M, Takano M, Ishii J, Tsuji M, Ide H, Miller IP, Miller NE, Hattori H. J Lipid Res, 2005, 46: 2015–2022

    CAS  PubMed  Google Scholar 

  58. Li J, Vosegaard T, Guo Z. Prog Lipid Res, 2017, 68: 37–56

    CAS  PubMed  Google Scholar 

  59. Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z. IJMS, 2014, 15: 10492–10507

    PubMed  PubMed Central  Google Scholar 

  60. Fujita A, Cheng J, Fujimoto T. Nat Protoc, 2010, 5: 661–669

    CAS  PubMed  Google Scholar 

  61. Abramczyk H, Surmacki J, Kopec M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. Analyst, 2015, 140: 2224–2235

    CAS  PubMed  Google Scholar 

  62. Jaeger D, Pilger C, Hachmeister H, Oberländer E, Wördenweber R, Wichmann J, Mussgnug JH, Huser T, Kruse O. Sci Rep, 2016, 6: 35340

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Horn PJ, Ledbetter NR, James CN, Hoffman WD, Case CR, Verbeck GF, Chapman KD. J Biol Chem, 2011, 286: 3298–3306

    CAS  PubMed  Google Scholar 

  64. Klymchenko AS. Acc Chem Res, 2017, 50: 366–375

    CAS  PubMed  Google Scholar 

  65. Lavis LD. Annu Rev Biochem, 2017, 86: 825–843

    CAS  PubMed  Google Scholar 

  66. Zhu H, Fan J, Du J, Peng X. Acc Chem Res, 2016, 49: 2115–2126

    CAS  PubMed  Google Scholar 

  67. Daemen S, van Zandvoort MAMJ, Parekh SH, Hesselink MKC. Mol Metab, 2015, 5: 153–163

    PubMed  PubMed Central  Google Scholar 

  68. Maekawa M, Fairn GD. J Cell Sci, 2014, 127: 4801–4812

    PubMed  Google Scholar 

  69. Tatenaka Y, Kato H, Ishiyama M, Sasamoto K, Shiga M, Nishitoh H, Ueno Y. Biochemistry, 2019, 58: 499–503

    CAS  PubMed  Google Scholar 

  70. Subramaniam HN, Chaubal KA. J Biochem Biophys Methods, 1990, 21: 9–16

    CAS  PubMed  Google Scholar 

  71. Aoki T, Hagiwara H, Fujimoto T. Exp Cell Res, 1997, 234: 313–320

    CAS  PubMed  Google Scholar 

  72. Koopman R, Schaart G, Hesselink MK. Histochem Cell Biol, 2001, 116: 63–68

    CAS  PubMed  Google Scholar 

  73. Greenspan P, Mayer EP, Fowler SD. J Cell Biol, 1985, 100: 965–973

    CAS  PubMed  Google Scholar 

  74. https://www.thermofisher.com/order/catalog/product/D3921, accessed on 2019-07-08

  75. https://www.thermofisher.com/order/catalog/product/D3922, accessed on 2019-07-08

  76. Ohsaki Y, Shinohara Y, Suzuki M, Fujimoto T. Histochem Cell Biol, 2010, 133: 477–480

    CAS  PubMed  Google Scholar 

  77. Elsey D, Jameson D, Raleigh B, Cooney MJ. J Microbiol Methods, 2007, 68: 639–642

    CAS  PubMed  Google Scholar 

  78. Pick U, Rachutin-Zalogin T. J Microbiol Methods, 2012, 88: 189–196

    CAS  PubMed  Google Scholar 

  79. Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret JP, Bougaran G. Biotechnol Biofuels, 2015, 8: 42

    PubMed  PubMed Central  Google Scholar 

  80. Koreiviene J. Microalgae lipid staining with fluorescent BODIPY dye. In: Spilling K, ed. Methods in Molecular Biology. New York: Humana Press, 2017. 1–7

    Google Scholar 

  81. Collot M, Fam TK, Ashokkumar P, Faklaris O, Galli T, Danglot L, Klymchenko AS. J Am Chem Soc, 2018, 140: 5401–5411

    CAS  PubMed  Google Scholar 

  82. Clapham DE. Cell, 2007, 131: 1047–1058

    CAS  PubMed  Google Scholar 

  83. Schwarz DS, Blower MD. Cell Mol Life Sci, 2016, 73: 79–94

    CAS  PubMed  Google Scholar 

  84. Zhu X, Dunand C, Snedden W, Galaud JP. Trends Plant Sci, 2015, 20: 483–489

    CAS  PubMed  Google Scholar 

  85. Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C. New Phytol, 2010, 187: 23–43

    CAS  PubMed  Google Scholar 

  86. Häder DP, Hemmersbach R. Gravitaxis in Euglena. In: Schwartzbach S, Shigeoka S, eds. Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology. vol 979. Cham: Springer, 2017. 237–266

    Google Scholar 

  87. Wheeler GL. Calcium-Dependent Signalling Processes in Chlamydomonas. In: Hippler M, ed. Chlamydomonas: Molecular Genetics and Physiology. Microbiology Monographs, vol 30. Cham: Springer, 2017. 233–255

    Google Scholar 

  88. Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P. Plant Cell, 2008, 20: 1665–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K. Curr Biol, 2009, 19: 133–139

    CAS  PubMed  Google Scholar 

  90. Collingridge P, Brownlee C, Wheeler GL. Curr Biol, 2013, 23: 2311–2318

    CAS  PubMed  Google Scholar 

  91. Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A. eLife, 2013, 2: e00744

    PubMed  PubMed Central  Google Scholar 

  92. Wheeler GL, Joint I, Brownlee C. Plant J, 2008, 53: 401–413

    CAS  PubMed  Google Scholar 

  93. Bickerton P, Sello S, Brownlee C, Pittman JK, Wheeler GL. New Phytol, 2016, 212: 920–933

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M. Plant Cell, 2011, 23: 2950–2963

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Taylor AR. PLoS ONE, 2009, 4: e4966

    PubMed  PubMed Central  Google Scholar 

  96. Alomaim H, Griffin P, Swist E, Plouffe LJ, Vandeloo M, Demonty I, Kumar A, Bertinato J. PLoS ONE, 2019, 14: e0210760

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. Cell Metab, 2012, 15: 279–291

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Aldon D, Mbengue M, Mazars C, Galaud JP. IJMS, 2018, 19: 665

    PubMed Central  Google Scholar 

  99. Chapman KD, Aziz M, Dyer JM, Mullen RT. Biochem J, 2019, 476: 1929–1942

    CAS  PubMed  Google Scholar 

  100. Major GC, Chaput JP, Ledoux M, St-Pierre S, Anderson GH, Zemel MB, Tremblay A. Obesity Rev, 2008, 9: 428–445

    CAS  Google Scholar 

  101. Villarroel P, Villalobos E, Reyes M, Cifuentes M. Nutr Rev, 2014, 72: 627–637

    PubMed  Google Scholar 

  102. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Br Med J, 2011, 342: d2040

    Google Scholar 

  103. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, Reid IR. Br Med J, 2010, 341: c3691

    Google Scholar 

  104. Xu C, Li X, Zhang L. PLoS ONE, 2013, 8: e68214

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gorain PC, Bagchi SK, Mallick N. Environ Tech, 2013, 34: 1887–1894

    CAS  Google Scholar 

  106. Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG. Nature, 1999, 402: 173–176

    CAS  Google Scholar 

  107. Pohnert G. Plant Physiol, 2002, 129: 103–111

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I, Romano G, Casotti R, Pohnert G, Wichard T, Colucci-D’ Amato L, Terrazzano G, Smetacek V. Nature, 2004, 429: 403–407

    CAS  PubMed  Google Scholar 

  109. Barofsky A, Pohnert G. Org Lett, 2007, 9: 1017–1020

    CAS  PubMed  Google Scholar 

  110. Vardi A, Formiggini F, Casotti R, De Martino A, Ribalet F, Miralto A, Bowler C. PLoS Biol, 2006, 4: e60

    PubMed  PubMed Central  Google Scholar 

  111. He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM. Science, 2004, 305: 1968–1971

    CAS  PubMed  Google Scholar 

  112. Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS. Nat Chem Biol, 2014, 10: 1034–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bothwell JHF, Brownlee C, Hetherington AM, Ng CKY, Wheeler GL, McAinsh MR. Plant J, 2006, 46: 327–335

    CAS  PubMed  Google Scholar 

  114. Pérez Koldenkova V, Nagai T. Biochim Biophysica Acta, 2013, 1833: 1787–1797

    Google Scholar 

  115. Pohl P, Prusisz B. Talanta, 2006, 69: 1227–1233

    CAS  PubMed  Google Scholar 

  116. Doi T, Nakagawa Y, Takegoshi K. Biochemistry, 2017, 56: 468–472

    CAS  PubMed  Google Scholar 

  117. Zhang J, Wang Y, Xu X, Yang X. Analyst, 2011, 136: 3865–3868

    CAS  PubMed  Google Scholar 

  118. Granholm K, Sokalski T, Lewenstam A, Ivaska A. Holzforschung, 2016, 70: 733–738

    CAS  Google Scholar 

  119. Gu K, Liu Y, Guo Z, Lian C, Yan C, Shi P, Tian H, Zhu WH. ACS Appl Mater Interfaces, 2016, 8: 26622–26629

    CAS  PubMed  Google Scholar 

  120. Egawa T, Hanaoka K, Koide Y, Ujita S, Takahashi N, Ikegaya Y, Matsuki N, Terai T, Ueno T, Komatsu T, Nagano T. J Am Chem Soc, 2011, 133: 14157–14159

    CAS  PubMed  Google Scholar 

  121. Tsien RY. Annu Rev Neurosci, 1989, 12: 227–253

    CAS  PubMed  Google Scholar 

  122. Kim HM, Kim BR, Hong JH, Park JS, Lee KJ, Cho BR. Angew Chem Int Ed, 2007, 46: 7445–7448

    CAS  Google Scholar 

  123. Collot M, Ponsot F, Klymchenko AS. Chem Commun, 2017, 53: 6117–6120

    CAS  Google Scholar 

  124. https://www.thermofisher.com/au/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identificationand-validation/g-protein-coupled/cell-based-second-messenger-assays/Fura-2-calcium-indicator.html, accessed on 2019-07-17

  125. https://www.thermofisher.com/au/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identificationand-validation/g-protein-coupled/cell-based-second-messenger-assays/indo-1-calcium-indicator.html, accessed on 2019-07-17

  126. https://www.thermofisher.com/au/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identificationand-validation/g-protein-coupled/cell-based-second-messenger-assays/Fluo-3-calcium-indicator.html, accessed on 2019-07-17

  127. https://www.abcam.com/rhod-2-am-fluorescent-ca2-indicatorab142780.html, accessed on 2019-07-17

  128. https://www.thermofisher.com/order/catalog/product/X14210?SID=srch-srp-X14210, accessed on 2019-07-18

  129. Oakes SG, Martin Ii WJ, Lisek CA, Powis G. Anal Biochem, 1988, 169: 159–166

    CAS  PubMed  Google Scholar 

  130. Yates SL, Fluhler EN, Lippiello PM. J Neurosci Res, 1992, 32: 255–260

    CAS  PubMed  Google Scholar 

  131. Nagai T, Sawano A, Park ES, Miyawaki A. Proc Natl Acad Sci USA, 2001, 98: 3197–3202

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. Proc Natl Acad Sci USA, 2004, 101: 10554–10559

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Heim N, Griesbeck O. J Biol Chem, 2004, 279: 14280–14286

    CAS  PubMed  Google Scholar 

  134. Geiger A, Russo L, Gensch T, Thestrup T, Becker S, Hopfner KP, Griesinger C, Witte G, Griesbeck O. Biophys J, 2012, 102: 2401–2410

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Available from: https://www.thermofisher.com/order/catalog/product/O6807, accessed on 2019-07-18

  136. https://www.thermofisher.com/order/catalog/product/C3011MP?SID=srch-srp-C3011MP, accessed on 2019-07-18

  137. Johnson I, Spence MTZ. A guide to fluorescent probes and labeling technologies. Molecular Probes Handbook, 11th ed. Life Technologies, 2010

    Google Scholar 

  138. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Methods, 2008, 46: 143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  139. https://www.photometrics.com/applications/pdfs/Calcium-Imaging-AppNote.pdf, accessed on 2019-07-18

  140. Ramos-Martinez EM, Fimognari L, Rasmussen MK, Sakuragi Y. Front Bioeng Biotechnol, 2019, 7: 35

    PubMed  PubMed Central  Google Scholar 

  141. Garcia MI, Chen JJ, Boehning D. Cell Calcium, 2017, 61: 44–49

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 29: 4332

    Google Scholar 

  143. Zhao Z, He B, Tang BZ. Chem Sci, 2015, 6: 5347–5365

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. J Am Chem Soc, 2005, 127: 17604–17605

    CAS  PubMed  Google Scholar 

  145. Wang E, Zhao E, Hong Y, Lam JWY, Tang BZ. J Mater Chem B, 2014, 2: 2013–2019

    CAS  PubMed  Google Scholar 

  146. Leung CWT, Hong Y, Chen S, Zhao E, Lam JWY, Tang BZ. J Am Chem Soc, 2013, 135: 62–65

    CAS  PubMed  Google Scholar 

  147. Chen S, Hong Y, Liu Y, Liu J, Leung CWT, Li M, Kwok RTK, Zhao E, Lam JWY, Yu Y, Tang BZ. J Am Chem Soc, 2013, 135: 4926–4929

    CAS  PubMed  Google Scholar 

  148. Wang Z, Yang L, Liu Y, Huang X, Qiao F, Qin W, Hu Q, Tang BZ. J Mater Chem B, 2017, 5: 4981–4987

    CAS  PubMed  Google Scholar 

  149. Kang M, Gu X, Kwok RTK, Leung CWT, Lam JWY, Li F, Tang BZ. Chem Commun, 2016, 52: 5957–5960

    CAS  Google Scholar 

  150. Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, Tang BZ. Chem Sci, 2017, 8: 5440–5446

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang Z, Gui C, Zhao E, Wang J, Li X, Qin A, Zhao Z, Yu Z, Tang BZ. ACS Appl Mater Interfaces, 2016, 8: 10193–10200

    CAS  PubMed  Google Scholar 

  152. Chennoufi R, Bougherara H, Gagey-Eilstein N, Dumat B, Henry E, Subra F, Bury-Moné S, Mahuteau-Betzer F, Tauc P, Teulade-Fichou MP, Deprez E. Sci Rep, 2016, 6: 21458

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Song Z, Kwok RTK, Zhao E, He Z, Hong Y, Lam JWY, Liu B, Tang BZ. ACS Appl Mater Interfaces, 2014, 6: 17245–17254

    CAS  PubMed  Google Scholar 

  154. Kwon JE, Park SY. Adv Mater, 2011, 23: 3615–3642

    CAS  PubMed  Google Scholar 

  155. Neupane LN, Hwang GW, Lee KH. Biosens Bioelectron, 2017, 92: 179–185

    CAS  PubMed  Google Scholar 

  156. Shyamal M, Mazumdar P, Maity S, Samanta S, Sahoo GP, Misra A. ACS Sens, 2016, 1: 739–747

    CAS  Google Scholar 

  157. Chen G, Zhou Z, Feng H, Zhang C, Wang Y, Qian Z, Pan J. Chem Commun, 2019, 55: 4841–4844

    CAS  Google Scholar 

  158. Casey JR, Grinstein S, Orlowski J. Nat Rev Mol Cell Biol, 2010, 11: 50–61

    CAS  PubMed  Google Scholar 

  159. Zhang J, Yan Z, Wang S, She M, Zhang Z, Cai W, Liu P, Li J. Dyes Pigments, 2018, 150: 112–120

    CAS  Google Scholar 

  160. Gao M, Li Y, Chen X, Li S, Ren L, Tang BZ. ACS Appl Mater Interfaces, 2018, 10: 14410–14417

    CAS  PubMed  Google Scholar 

  161. Eder M, Lütz-Meindl U. J Microsc, 2008, 231: 201–214

    CAS  PubMed  Google Scholar 

  162. Gawkowska D, Cybulska J, Zdunek A. Polymers, 2018, 10: 762

    PubMed Central  Google Scholar 

  163. Wu HC, Bulgakov VP, Jinn TL. Front Plant Sci, 2018, 9: 1612

    PubMed  PubMed Central  Google Scholar 

  164. Brookes JD, Geary SM, Ganf GG, Burch MD. Mar Freshwater Res, 2000, 51: 817–823

    CAS  Google Scholar 

  165. Bootman MD, Rietdorf K, Collins T, Walker S, Sanderson M. Cold Spring Harbor Protocols, 2013, 2013: pdb.top066050

    PubMed  Google Scholar 

  166. Alonso M, Chamero P, Villalobos C, Garcia-Sancho J. Cell Calcium, 2003, 33: 27–35

    CAS  PubMed  Google Scholar 

  167. Kim E, Lee S, Park SB. Chem Commun, 2012, 48: 2331–2333

    CAS  Google Scholar 

  168. Do TT, Rundel K, Gu Q, Gann E, Manzhos S, Feron K, Bell J, McNeill CR, Sonar P. New J Chem, 2017, 41: 2899–2909

    CAS  Google Scholar 

  169. Merz T, Wenninger M, Weinberger M, Riedle E, Wagenknecht HA, Schütz M. Phys Chem Chem Phys, 2013, 15: 18607–18619

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AHM Mohsinul Reza was supported by the Australian Government Research Training Program Scholarship (AGRTPS) (International) for his PhD study at Flinders University. Y Tang was supported by the Australia-China Science and Research Fund-Joint Research Centre on Personal Health Technologies. The expertise, equipment and supports provided by Microscopy Australia and the Australian National Fabrication Facility at the South Australia nodes under the National Collaborative Research Infrastructure Strategy are also acknowledged

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguang Qin or Youhong Tang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza, A.M., Tavakoli, J., Zhou, Y. et al. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Sci. China Chem. 63, 308–324 (2020). https://doi.org/10.1007/s11426-019-9664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9664-7

Keywords

Navigation