Skip to main content
Log in

Dose concentration and spatial memory and brain mitochondrial function association after 3,4-methylenedioxymethamphetamine (MDMA) administration in rats

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

MDMA-induced impairments of memory performance have been reported in different human and animal studies. However, the correlation between spatial memory impairment, brain mitochondrial function, and concentrations of MDMA and its metabolites has not yet been investigated despite it being needed for comparison with human studies. Therefore, the aim of this study was to investigate the dose concentration and spatial memory as well as brain mitochondrial function association after MDMA administration in rats. We assessed the effects of MDMA [0.5, 2.5, 5, 10 and 15 mg/kg; intraperitoneally (I.P)] on spatial memory of male Wistar rats in the Morris water maze test (MWM) and brain mitochondrial function (i.e., reactive oxygen species, mitochondrial membrane potential, swelling and outer membrane damage, cytochrome c release, and ADP/ATP ratio). Concentrations of MDMA and its metabolite, MDA, were determined in plasma, cerebrospinal fluid (CSF) and brain which was obtained immediately after probe test of MWM (i.e., 4 h after last training trial). The results of this study indicate nonlinear kinetics of MDMA after I.P adminstration. Also, an insignificant correlation was observed between MDMA doses and the MDA/MDMA ratio in plasma, CSF, and brain. Moreover, the results showed that MDMA, but not MDA, accumulated in brain tissue by increasing the administered doses. Beside, MDMA-induced impairments of spatial memory and brain mitochondrial function were significantly correlated with the concentrations of both MDMA and MDA in plasma, CSF, and brain. Therefore, it can be suggested that MDMA and its metabolite, MDA, affect spatial memory and brain mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Able JA, Gudelsky GA, Vorhees CV, Williams MT (2006) 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatr 59(12):1219–1226. https://doi.org/10.1016/j.biopsych.2005.09.006

    Article  CAS  Google Scholar 

  • Affaitati A, Cardone L, De Cristofaro T et al (2003) Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J Biol Chem 278(6):4286–4294

    CAS  PubMed  Google Scholar 

  • Alves E, Summavielle T, Alves CJ et al (2009) PRECLINICAL STUDY: Ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A. Addict Biol 14(2):185–193

    CAS  PubMed  Google Scholar 

  • Arias-Cavieres A, Rozas C, Reyes-Parada M et al (2010) MDMA (“ecstasy”) impairs learning in the Morris Water Maze and reduces hippocampal LTP in young rats. Neurosci Lett 469(3):375–379. https://doi.org/10.1016/j.neulet.2009.12.031

    Article  CAS  PubMed  Google Scholar 

  • Asl SS, Mousavizedeh K, Pourheydar B, Soleimani M, Rahbar E, Mehdizadeh M (2013) Protective effects of N-acetylcysteine on 3, 4-methylenedioxymethamphetamine-induced neurotoxicity in male Sprague-Dawley rats. Metab Brain Dis 28(4):677–686

    Google Scholar 

  • Azami K, Etminani M, Tabrizian K et al (2010) The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine–bucladesine combination in rats. Eur J Pharmacol 636(1–3):102–107

    CAS  PubMed  Google Scholar 

  • Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, de Lourdes BM, Carvalho F (2015) Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 89(10):1695–1725

    CAS  PubMed  Google Scholar 

  • Barrett SP, Darredeau C, Pihl RO (2006) Patterns of simultaneous polysubstance use in drug using university students. Hum Psychopharmacol Clin Exp 21(4):255–263

    Google Scholar 

  • Baumann MH, Zolkowska D, Kim I, Scheidweiler KB, Rothman RB, Huestis MA (2009) Effects of dose and route of administration on pharmacokinetics of (±)-3,4-methylenedioxymethamphetamine in the rat. Drug Metab Dispos 37(11):2163–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Brunt TM, Koeter MW, Niesink RJ, van den Brink W (2012) Linking the pharmacological content of ecstasy tablets to the subjective experiences of drug users. Psychopharmacology 220(4):751–762

    CAS  PubMed  Google Scholar 

  • Cai X, Gu Z, Zhong P, Ren Y, Yan Z (2002) Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J Biol Chem 277(39):36553–36562

    CAS  PubMed  Google Scholar 

  • Capela J, Macedo C, Branco P et al (2007) Neurotoxicity mechanisms of thioether ecstasy metabolites. Neuroscience 146(4):1743–1757

    CAS  PubMed  Google Scholar 

  • Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51(6):789–796

    CAS  PubMed  Google Scholar 

  • Concheiro M, Baumann MH, Scheidweiler KB, Rothman RB, Marrone GF, Huestis MA (2014) Nonlinear pharmacokinetics of (±)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat. Drug Metab Dispos 42(1):119–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford CA, Williams MT, Kohutek JL et al (2006) Neonatal 3,4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase A activity, serotonin and dopamine content, and [35 S] GTPγS binding in adult rats. Brain Res 1077(1):178–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36(1):60–90

    PubMed  Google Scholar 

  • D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

    CAS  PubMed  Google Scholar 

  • Degenhardt L, Coffey C, Carlin JB, Moran P, Patton GC (2007) Who are the new amphetamine users? A 10-year prospective study of young Australians. Addiction (Abingdon, England) 102(8):1269–1279. https://doi.org/10.1111/j.1360-0443.2007.01906.x

    Article  Google Scholar 

  • Delaforge M, Jaouen M, Bouille G (1999) Inhibitory metabolite complex formation of methylenedioxymethamphetamine with rat and human cytochrome P450. Particular involvement of CYP 2D. Environ Toxicol Pharmacol 7(3):153–158

    CAS  PubMed  Google Scholar 

  • Eftekharzadeh B, Ramin M, Khodagholi F et al (2012) Inhibition of PKA attenuates memory deficits induced by beta-amyloid (1–42), and decreases oxidative stress and NF-kappaB transcription factors. Behav Brain Res 226(1):301–308. https://doi.org/10.1016/j.bbr.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  • Eskandari MR, Fard JK, Hosseini M-J, Pourahmad J (2012) Glutathione mediated reductive activation and mitochondrial dysfunction play key roles in lithium induced oxidative stress and cytotoxicity in liver. Biometals 25(5):863–873

    CAS  PubMed  Google Scholar 

  • Esteban B, O'Shea E, Camarero J, Sanchez V, Green AR, Colado MI (2001) 3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology 154(3):251–260

    CAS  PubMed  Google Scholar 

  • Farre M, De La Torre R, Mathúna BÓ et al (2004) Repeated doses administration of MDMA in humans: pharmacological effects and pharmacokinetics. Psychopharmacology 173(3–4):364–375

    CAS  PubMed  Google Scholar 

  • Ghazi-Khansari M, Mohammadi-Bardbori A, Hosseini MJ (2006) Using Janus green B to study paraquat toxicity in rat liver mitochondria: role of ACE inhibitors (thiol and nonthiol ACEi). Ann N Y Acad Sci 1090(1):98–107

    CAS  PubMed  Google Scholar 

  • Hall H, Lundkvist C, Halldin C et al (1997) Autoradiographic localization of 5-HT 1A receptors in the post-mortem human brain using [3 H] WAY-100635 and [11 C] WAY-100635. Brain Res 745(1):96–108

    CAS  PubMed  Google Scholar 

  • Heydari A, Yeo KR, Lennard M, Ellis SW, Tucker G, Rostami-Hodjegan A (2004) Mechanism-based inactivation of CYP2D6 by methylenedioxymethamphetamine. Drug Metab Dispos 32(11):1213–1217

    CAS  PubMed  Google Scholar 

  • Jamali B, Ardakani YH, Foroumadi A, Kobarfard F, Rouini MR (2013) Determination of MDMA and its three metabolites in the rat perfused liver. J Anal Toxicol 37(6):357–361. https://doi.org/10.1093/jat/bkt039

    Article  CAS  PubMed  Google Scholar 

  • Johansen P, Krebs T (2009) How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol 23(4):389–391

    CAS  PubMed  Google Scholar 

  • Karuppagounder SS, Bhattacharya D, Ahuja M et al (2014) Elucidating the neurotoxic effects of MDMA and its analogs. Life Sci 101(1–2):37–42. https://doi.org/10.1016/j.lfs.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Kim AH, Wakabayashi KT, Baumann MH, Shaham Y (2014) Critical role of peripheral vasoconstriction in fatal brain hyperthermia induced by MDMA (Ecstasy) under conditions that mimic human drug use. J Neurosci 34:7754–7762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyles J, Cadet JL (2003) Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res Rev 42(2):155–168

    CAS  PubMed  Google Scholar 

  • Meyer JS, Piper BJ, Vancollie VE (2008) Development and characterization of a novel animal model of intermittent MDMA (“Ecstasy”) exposure during adolescence. Ann N Y Acad Sci 1139(1):151–163

    CAS  PubMed  Google Scholar 

  • Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of±3, 4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25(4):439–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyano S, Del Rio J, Frechilla D (2004) Role of Hippocampal CaMKII in serotonin 5-HTIA receptor-mediated learning deficit in rats. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 29(12):2216–2224

    CAS  Google Scholar 

  • Mueller M, Peters FT, Maurer HH, McCann UD, Ricaurte GA (2008) Nonlinear pharmacokinetics of (±) 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) and its major metabolites in squirrel monkeys at plasma concentrations of MDMA that develop after typical psychoactive doses. J Pharmacol Exp Ther 327(1):38–44

    CAS  PubMed  Google Scholar 

  • Mueller M, Yuan J, Felim A et al (2009) Further studies on the role of metabolites in (±)-3,4-methylenedioxymethamphetamine-induced serotonergic neurotoxicity. Drug Metab Dispos 37(10):2079–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller M, Goodwin AK, Ator NA, McCann UD, Ricaurte GA (2011) Metabolism and disposition of 3,4-methylenedioxymethamphetamine (“ecstasy”) in baboons after oral administration: comparison with humans reveals marked differences. J Pharmacol Exp Ther 338(1):310–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nassireslami E, Nikbin P, Payandemehr B et al (2013) A cAMP analog reverses contextual and tone memory deficits induced by a PKA inhibitor in Pavlovian fear conditioning. Pharmacol Biochem Behav 105:177–182

    CAS  PubMed  Google Scholar 

  • Nguyen P, Woo N (2003) Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 71(6):401–437

    CAS  PubMed  Google Scholar 

  • Papa S, De Rasmo D, Technikova-Dobrova Z et al (2012) Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 586(5):568–577

    CAS  PubMed  Google Scholar 

  • Pazos A, Palacios J (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346(2):205–230

    CAS  PubMed  Google Scholar 

  • Pizarro N, de la Torre R, Farre M, Segura J, Llebaria A, Joglar J (2002) Synthesis and capillary electrophoretic analysis of enantiomerically enriched reference standards of MDMA and its main metabolites. Bioorg Med Chem 10(4):1085–1092

    CAS  PubMed  Google Scholar 

  • Reneman L, Booij J, Schmand B, van den Brink W, Gunning B (2000) Memory disturbances in” Ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology 148(3):322–324

    CAS  PubMed  Google Scholar 

  • Rodríguez-Arias M, Maldonado C, Vidal-Infer A, Guerri C, Aguilar MA, Miñarro J (2011) Intermittent ethanol exposure increases long-lasting behavioral and neurochemical effects of MDMA in adolescent mice. Psychopharmacology 218(2):429–442

    PubMed  Google Scholar 

  • Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O (2013) Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3,4-methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 125(5):736–746

    PubMed  Google Scholar 

  • Schiapparelli L, Del Río J, Frechilla D (2005) Serotonin 5-HT1A receptor blockade enhances Ca2+/calmodulin-dependent protein kinase II function and membrane expression of AMPA receptor subunits in the rat hippocampus: implications for memory formation. J Neurochem 94(4):884–895

    CAS  PubMed  Google Scholar 

  • Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochimica et Biophysica Acta (BBA) Gen Subj 1820(12):1940–1950

    CAS  Google Scholar 

  • Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2013) Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria. Metallomics 5(6):736–744

    CAS  PubMed  Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470

    CAS  PubMed  Google Scholar 

  • Sprague JE, Preston AS, Leifheit M, Woodside B (2003) Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning. Physiol Behav 79(2):281–287

    CAS  PubMed  Google Scholar 

  • Starr MA, Page ME, Waterhouse BD (2008) MDMA (3,4-methylenedioxymethamphetamine)-mediated distortion of somatosensory signal transmission and neurotransmitter efflux in the ventral posterior medial thalamus. J Pharmacol Exp Ther 327(1):20–31

    CAS  PubMed  Google Scholar 

  • Upreti VV, Eddington ND (2008) Fluoxetine pretreatment effects pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA, ECSTASY) in rat. J Pharm Sci 97(4):1593–1605

    CAS  PubMed  Google Scholar 

  • Valtier S, Phelix CF, Cody JT (2007) Analysis of MDMA and its metabolites in urine and plasma following a neurotoxic dose of MDMA. J Anal Toxicol 31(3):138–143

    CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sharifzadeh or M. R. Rouini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, G., Mehdizadeh, H., Lavasani, H. et al. Dose concentration and spatial memory and brain mitochondrial function association after 3,4-methylenedioxymethamphetamine (MDMA) administration in rats. Arch Toxicol 94, 911–925 (2020). https://doi.org/10.1007/s00204-020-02673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02673-x

Keywords

Navigation