Skip to main content

Advertisement

Log in

Reductive stress in striated muscle cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2—the master regulator of the antioxidant response—, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide—via enhanced activity of cystathionine β-synthase—that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer’s ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP-1:

Activating protein 1

ARE:

Antioxidant response element

BAG3:

Bcl-2-associated athanogene-3

CBS:

Cystathionine β-synthase

ER:

Endoplasmic reticulum

ERO1:

ER oxidoreductin 1

GPX1:

Glutathione peroxidase-1

GRP78/BiP:

Glucose regulated protein 78/immunoglobulin-heavy-chain-binding protein

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

HSPs:

Heat-shock proteins

I/R:

Ischemia/reperfusion

IRE-1α:

Inositol-requiring 1α

Keap1:

Kelch-like ECH-associated protein-1

Klf9:

Kruppel-like factor 9

Maf:

Musculoaponeurotic fibrosarcoma oncogene homolog

NADH:

Reduced nicotinamide adenine dinucleotide

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NOX:

NADPH oxidase

Nrf2:

NF-E2-related factor 2

OS:

Oxidative stress

PDI:

Protein disulphide isomerase

PERK:

Double-stranded RNA-dependent protein kinase (PKR)-like ER kinase

ROS:

Reactive oxygen species

RS:

Reductive stress

SOD2:

Superoxide dismutase 2

SQR:

Sulfide quinone reductase

SQSTM1:

Sequestosome 1

TAG:

Triacylglycerol

TRPA1:

Transient receptor potential ankyrin 1

References

  1. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    PubMed  Google Scholar 

  2. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–462

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657(1–22):2004

    Google Scholar 

  4. Ha EM, OhCT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

  5. Chávez V, Mohri-Shiomi A, MaadaniA, Vega LA, Garsin DA (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176:1567–1577

  6. Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ (2013) Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 18:1114–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Yang Y, Song Y, Loscalzo J (2007) Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci USA 104:10813–10817

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  9. Kohen R (1999) Skin antioxidants: their role in aging and in oxidative stress—new approaches for their evaluation. Biomed Pharmacother 53:181–192

    PubMed  CAS  Google Scholar 

  10. Kohen R, Gati I (2000) Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology 148:149–157

    PubMed  CAS  Google Scholar 

  11. Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88:93–100

    PubMed  CAS  Google Scholar 

  12. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta 1865:721–733

    CAS  Google Scholar 

  13. Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ (2015) Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 88:275–289

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Yang Y, Palliyaguru DL, Kensler TW (2016) Frugal chemoprevention: Targeting Nrf2 with foods rich in sulforaphane. Semin Oncol 43:146–153

    PubMed  CAS  Google Scholar 

  15. Fuse Y, Kobayashi M (2017). Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules 22

  16. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    PubMed  CAS  Google Scholar 

  17. Gutteridge JM (1994) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci 738:201–213

    PubMed  CAS  Google Scholar 

  18. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    PubMed  CAS  Google Scholar 

  19. Powers SK, Smuder AJ, Judge AR (2012) Oxidative stress and disuse muscle atrophy: cause or consequence? Curr Opin Clin Nutr Metab Care 15:240–245

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125–152

    PubMed  Google Scholar 

  23. Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, Yongvanit P, Kawanishi S, Murata M (2014) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16:193–217

    PubMed  PubMed Central  Google Scholar 

  24. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J (2015) The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 36:377–393

    PubMed  CAS  Google Scholar 

  25. Dennison EM, Avan A. Sayer AA, Cooper C (2017) Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol 13:340–347

  26. Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta

  27. Glennon-Alty L, Hackett AP, Chapman EA, Wright HL (2018) Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 125:25–35

    PubMed  CAS  Google Scholar 

  28. Hecker L (2018) Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol 314:L642–L653

    PubMed  CAS  Google Scholar 

  29. Hoffmann MH, Griffiths HR (2018) The dual role of ROS in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med pii S0891–5849(18):30119–30129

    Google Scholar 

  30. Kang R, Kroemer G, Tang D (2018) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med pii S0891–5849(18):30907–30909

    Google Scholar 

  31. Mattson MP, Arumugam TV (2018) Hallmarks of brain aging: adaptive and pathological modification by metabolic state. Cell Metab 27:1176–1199

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Peña-Oyarzun D, Bravo-Sagua R, Diaz A, Aleman L, Chiong M, Garcia L, Bambs C, Troncoso R, Cifuentes M, Morselli E, Ferreccio C, Quest AFG, Criollo A, Lavandero S (2018) Autophagy and oxidative stress in non-communicable diseases: a matter of the inflammatory state? Free Radic Biol Med pii S0891–5849(18):30932–30938

    Google Scholar 

  33. Reczek CR, Chandel NS (2018) ROS promotes cancer cell survival through calcium signaling. Cancer Cell 33:949–951

    PubMed  CAS  Google Scholar 

  34. Handy DE, Loscalzo J (2017) Responses to reductive stress in the cardiovascular system. Free Radic Biol Med 109:114–124

    PubMed  CAS  Google Scholar 

  35. Nishida M, Nishimura A, Matsunaga T, Motohashi H, Kasamatsu S, Akaike T (2017) Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radic Biol Med 109:132–140

    PubMed  CAS  Google Scholar 

  36. Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME (2017) Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int J Mol Sci 18(10)

  37. Itoh K, Ishii T, Wakabayashi N, Yamamoto M (1999) Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 31:319–324

    PubMed  CAS  Google Scholar 

  38. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JD, Yamamoto M (2003) Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35:238–245

    PubMed  CAS  Google Scholar 

  39. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26:2887–2900

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD (2015) p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199–204

  41. Fiacco E, Castagnetti F, Bianconi V, Madaro L, De Bardi M, Nazio F, D'Amico A, Bertini E, Cecconi F, Puri PL, Latella L (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23:1839–1849

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  43. Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY (1850) Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta 794–801:2015

    Google Scholar 

  44. Kitaoka Y, Takeda K, Tamura Y, Fujimaki S, Takemasa T, Hatta H (2016) Nrf2 deficiency does not affect denervation-induced alterations in mitochondrial fission and fusion proteins in skeletal muscle. Physiol Rep 4

  45. Papaiahgari S, Kleeberger SR, Cho HY, Kalvakolanu DV, Reddy SP (2004) NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. J Biol Chem 279:42302–42312

    PubMed  CAS  Google Scholar 

  46. Brewer AC, Murray TVA, Arno M, Zhang M, Anilkumar NP, Mann GE, Shah AM (2011) Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic Biol Med 51:205–215

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Essick EE, Wilson RM, Pimentel DR, Shimano M, Baid S, Ouchi N, Sam F (2013) Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes. PLoS ONE 8:e68697

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Ren Y, Li Y, Yan J, Ma M, Zhou D, Xue Z, Zhang Z, Liu H, Yang H, Jia L, Zhang L, Zhang Q, Mu S, Zhang R, Da Y (2017) Adiponectin modulates oxidative stress-induced mitophagy and protects C2C12 myoblasts against apoptosis. Sci Rep 7:3209

    PubMed  PubMed Central  Google Scholar 

  49. Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, Wawrzyniak JA, Foley C, Leonova KI, Grimm MJ, Moparthy K, Ionov Y, Wang J, Liu S, Sexton S, Kandel ES, Bakin AV, Zhang Y, Kaminski N, Segal BH, Nikiforov MA (2014) Nrf2 amplifies oxidative stress via induction of Klf9. Mol Cell 53:916–928

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Bellezza I, Mierla AL, Minelli A (2010) Nrf2 and NF-κB and their concerted modulation in cancer pathogenesis and progression. Cancers 2:483–497

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang B, Zhu XL, Kim Y, Li J, Huang SY, Saleem S, Li RC, Xu Y, Dore S, Cao WS (2012) Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 52:928–936

    PubMed  CAS  Google Scholar 

  52. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, Kong AN (2008) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Minelli A, Grottelli S, Mierla A, Pinnen F, Cacciatore I, Bellezza I (2012) Cyclo(His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signalling. Int J Biochem Cell Biol 44:525–535

    PubMed  CAS  Google Scholar 

  54. Kim SW, Lee HK, Shin JH, Lee JK (2013) Up-down regulation of HO-1 and iNOS gene expressions by ethyl pyruvate via recruiting p300 to Nrf2 and depriving it from p65. Free Radic Bio Med 65:468–476

    CAS  Google Scholar 

  55. Gallagher EJ, LeRoith D, Stasinopoulos M, Zelenko Z, Shiloach J (2016) Polyol accumulation in muscle and liver in a mouse model of type 2 diabetes. J Diabetes Complications 30:999–1007

    PubMed  PubMed Central  Google Scholar 

  56. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NFkappaB and underlies its chemo-resistance. Blood 120:5188–5198

    PubMed  CAS  Google Scholar 

  57. Cuadrado A, Martin-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289:15244–15258

  58. Zhou LZ, Johnson AP, Rando TA (2001) NF kappa B and AP-1 mediate transcriptional respossssnses to oxidative stress in skeletal muscle cells. Free Radic Biol Med 31:1405–1416

    PubMed  CAS  Google Scholar 

  59. Wardyn JD, Ponsford AH, SandersonCM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626

  60. Gào X, Schöttker B (2017) Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 8:51888–51906

    PubMed  PubMed Central  Google Scholar 

  61. Moldogazieva NT, Lutsenko SV, Terentiev AA (2018) Reactive oxygen and nitrogen species-induced protein modifications: implication in carcinogenesis and anticancer therapy. Cancer Res 78:6040–6047

    PubMed  CAS  Google Scholar 

  62. Brigelius-Flohé R, Flohé L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15:2335–2381

    PubMed  PubMed Central  Google Scholar 

  63. Götz ME, Künig G, Riederer P, Youdim MB (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63:37–122

    PubMed  Google Scholar 

  64. Bellezza I, Grottelli S, Mierla AL, Cacciatore I, Fornasari E, Roscini L, Cardinali G, Minelli A (2014) Neuroinflammation and endoplasmic reticulum stress are coregulated by cyclo(His-Pro) to prevent LPS neurotoxicity. Int J Biochem Cell Biol 51:159–169

    PubMed  CAS  Google Scholar 

  65. Cullinan SB, Diehl JA (2016) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332

    Google Scholar 

  66. Grottelli S, Ferrari I, Pietrini G, Peirce MJ, Minelli A, Bellezza I (2016) The role of Cyclo(His-Pro) in neurodegeneration. Int J Mol Sci 17

  67. Park JS, Oh SY, Lee DH, Lee YS, Sung SH, Ji HW, Lee MJ, Lee YH, Rhee SG, Bae SH (2016) p62/SQSTM1 is required for the protection against endoplasmic reticulum stress-induced apoptotic cell death. Free Radic Res 50:1408–1421

    PubMed  CAS  Google Scholar 

  68. Simon HU, Friis R, Tait SW, Ryan KM (2017) Retrograde signaling from autophagy modulates stress responses. Sci Signal 10:468

    Google Scholar 

  69. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Tu BP, Weissman JS (2002) The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10:983–994

    PubMed  CAS  Google Scholar 

  71. Cuozzo JW, Kaiser CA (1999) Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol 1:130–135

    PubMed  CAS  Google Scholar 

  72. Hourihan JM, Moronetti Mazzeo LE, Fernández-Cárdenas LP, Blackwell TK (2016) Cysteine sulfenylation directs IRE-1 to activate the SKN-1/Nrf2 antioxidant response. Mol Cell 2016(63):553–566

    Google Scholar 

  73. Bellezza I, Scarpelli P, Pizzo SV, Grottelli S, Costanzi E, Minelli A (2017) ROS-independent Nrf2 activation in prostate cancer. Oncotarget 8:67506–67518

    PubMed  PubMed Central  Google Scholar 

  74. Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW (2003) Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23:8786–8794

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Grottelli S, Costanzi E, Peirce MJ, Minelli A, Cellini B, Bellezza I (2018) Potential Influence of Cyclo(His-Pro) on Proteostasis: Impact on Neurodegenerative Diseases. Curr Protein Pept Sci 19:805–812

    PubMed  CAS  Google Scholar 

  76. Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2:138–139

    PubMed  Google Scholar 

  77. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    PubMed  CAS  Google Scholar 

  78. Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51:618–631

    PubMed  CAS  Google Scholar 

  81. Baird L, Llères D, Swift S, Dinkova-Kostova AT (2013) Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA 110:15259–15264

    PubMed  CAS  PubMed Central  Google Scholar 

  82. McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2006) Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem 281:24756–24768

    PubMed  CAS  Google Scholar 

  83. Copple IM, Lister A, Obeng AD, Kitteringham NR, Jenkins RE, Layfield R, Foster BJ, Goldring CE, Park BK (2010) Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem 285:16782–16788

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 18:792–801

    PubMed  CAS  Google Scholar 

  85. Rhee SG, Bae SH (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med 88:205–211

    PubMed  CAS  Google Scholar 

  86. Pasha M, Eid AH, Eid AA, Gorin Y, Munusamy S (2017) Sestrin2 as a novel biomarker and therapeutic target for various diseases. Oxid Med Cell Longev 2017:3296294

    PubMed  PubMed Central  Google Scholar 

  87. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013) Sestrins activate Nrf2 by promoting p62- dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17:73–84

    PubMed  CAS  Google Scholar 

  88. Lau A, Zheng Y, Tao S, Wang H, Whitman SA, White E, Zhang DD (2013) Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33:2436–2446

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 64:4–11

    PubMed  CAS  Google Scholar 

  90. Guo Y, Yu S, Zhang C, Kong AN (2015) Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med 88:337–349

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol 25:715–744

    CAS  Google Scholar 

  92. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837

    PubMed  PubMed Central  Google Scholar 

  93. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defences. Int J Mol Sci 13:3145–3175

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130:427–439

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang X, Min X, Li C, Benjamin IJ, Qian B, Ding Z, Gao X, Yao Y, Ma Y, Cheng Y, Liu L (2010) Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55:1412–1417

    PubMed  CAS  Google Scholar 

  96. Rajasekaran NS, Varadharaj S, Khanderao GD, Davidson CJ, Kannan S, Firpo MA, Zweier JL, Benjamin IJ (2011) Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid Redox Signal 14:957–971

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, Benjamin IJ (2012) Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 26:1442–1451

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Cortassa S, O’Rourke B, Aon MA (1837) Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim Biophys Acta 287–295:2014

    Google Scholar 

  100. Korge P, Calmettes G, Weiss JN (1847) Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta 514–525:2015

    Google Scholar 

  101. Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK (2009) Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 11:2741–2758

  102. Ali ZA, de Jesus PV, Yuan K, Orcholski M, Pan S, Qi W, Chopra G, Adams C, Kojima Y, Leeper NJ, Qu X, Zaleta-Rivera K, Kato K, Yamada Y, Oguri M, Kuchinsky A, Hazen SL, Jukema JW, Ganesh SK, Nabel EG, Channon K, Leon MB, Charest A, Quertermous T, Ashley EA (2014) Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1. J Clin Invest 124:5159–5174

    PubMed  PubMed Central  Google Scholar 

  103. de Haan JB (2014) Limiting reductive stress for treating in-stent stenosis: the heart of the matter? J Clin Invest 124:5092–5094

    PubMed  PubMed Central  Google Scholar 

  104. Kurian GA, Rajagopal R, Vedantham S, Rajesh M (2016) The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev 2016:1656450

    PubMed  PubMed Central  Google Scholar 

  105. Redmann M, Darley-Usmar V, Zhang J (2016) The role of autophagy, mitophagy and lysosomal functions in modulating bioenergetics and survival in the context of redox and proteotoxic damage: implications for neurodegenerative diseases. Aging Dis 7:150–162

    PubMed  PubMed Central  Google Scholar 

  106. Backos DS, Franklin CC, Reigan P (2012) The role of glutathione in brain tumor drug resistance. Biochem Pharmacol 83:1005–1012

    PubMed  CAS  Google Scholar 

  107. Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. https://doi.org/10.1083/jcb.201804161

  108. Lam HC, Baglini CV, Lope AL, Parkhitko AA, Liu HJ, Alesi N, Malinowska IA, Ebrahimi-Fakhari D, Saffari A, Yu JJ, Pereira A, Khabibullin D, Ogorek B, Nijmeh J, Kavanagh T, Handen A, Chan SY, Asara JM, Oldham WM, Diaz-Meco MT, Moscat J, Sahin M, Priolo C, Henske EP (2017) p62/SQSTM1 cooperates with hyperactive mTORC1 to regulate glutathione production, maintain mitochondrial integrity, and promote tumorigenesis. Cancer Res 77:3255–3267

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T, Pagano M (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178:316–329

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal KC, Lindahl P, Sayin VI, Bergo MO (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178:330–345

    PubMed  CAS  Google Scholar 

  111. Towers CG, Fitzwalter BE, Regan D, Goodspeed A, Morgan MJ, Liu CW, Gustafson DL, Thorburn A (2019) Dev Cell 50:690–703.e6

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Soldevila-Barreda JJ, Romero-Canelón I, Habtemariam A, Sadler PJ (2015) Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun 6:6582

    PubMed  CAS  Google Scholar 

  113. Sopha P, Ren HY, Grove DE, Cyr DM (2017) Endoplasmic reticulum stress-induced degradation of DNAJB12 stimulates BOK accumulation and primes cancer cells for apoptosis. J Biol Chem 292:11792–11803

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Coverdale JPC, Romero-Canelón I, Sanchez-Cano C, Clarkson GJ, Habtemariam A, Wills M, Sadler PJ (2018) Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat Chem 10:347–354

    PubMed  CAS  Google Scholar 

  115. Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014:137919

    PubMed  PubMed Central  Google Scholar 

  116. Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142–153

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    PubMed  CAS  Google Scholar 

  118. Cotter MA, Cameron NE, Robertson S (1992) Polyol pathway-mediated changes in cardiac muscle contractile properties: studies in streptozotocin-diabetic and galactose-fed rats. Exp Physiol 77:829–838

    PubMed  CAS  Google Scholar 

  119. Mohazzab HK, Kaminski PM, Wolin MS (1997) Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase. Circulation 96:614–620

    Google Scholar 

  120. Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA 3rd (2006) Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res 98:133–140

    PubMed  CAS  Google Scholar 

  121. Ananthakrishnan R, Li Q, Gomes T, Schmidt AM, Ramasamy R (2011) Aldose reductase pathway contributes to vulnerability of aging myocardium to ischemic injury. Exp Gerontol 46:762–767

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Chen X, Zhao X, Lan F, Zhou T, Cai H, Sun H, Kong W, Kong W (2017) Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 Cells. Sci Rep 7:13248

    PubMed  PubMed Central  Google Scholar 

  123. D’Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379

    PubMed  PubMed Central  Google Scholar 

  124. Monaco CMF, Perry CGR, Hawke TJ (2017) Diabetic Myopathy: current molecular understanding of this novel neuromuscular disorder. Curr Opin Neurol 30:545–552

    PubMed  CAS  Google Scholar 

  125. Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS et al (2016) Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated Akt pathway. J Pathol 238:470–482

    PubMed  CAS  Google Scholar 

  126. Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R (2018) RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Musc 9:1213–1234

    Google Scholar 

  127. Yu Q, Lee CF, Wang W, Karamanlidis G, Kuroda J, Matsushima S, Sadoshima J, Tian R (2014) Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc 3:e000555

    PubMed  PubMed Central  Google Scholar 

  128. Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK (2016) Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 8(352):231–235

    Google Scholar 

  129. Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal 28:251–272

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8:349–369

    PubMed  PubMed Central  Google Scholar 

  131. Dodson M, Redmann M, Rajasekaran NS, Darley-Usmar V, Zhang J (2015) KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J 469:347–355

    PubMed  CAS  Google Scholar 

  132. Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM (2017) The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 22:601–611

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Guilbert SM, Lambert H, Rodrigue MA, Fuchs M, Landry J, Lavoie JN (2018) HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency. FASEB J 32:3518–3535

    PubMed  CAS  Google Scholar 

  134. Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65:83–89

  135. Kannan S, Muthusamy VR, Whitehead KJ, Wang L, Gomes AV, Litwin SE, Kensler TW, Abel ED, Hoidal JR, Rajasekaran NS (2013) Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy. Cardiovasc Res 100:63–73

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Quiles JM, Narasimhan M, Mosbruger T, Shanmugam G, Crossman D, Rajasekaran NS (2017) Identification of transcriptome signature for myocardial reductive stress. Redox Biol 13:568–580

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6:614–621

    PubMed  CAS  Google Scholar 

  138. Sairam T, Patel AN, Subrahmanian M, Gopalan R, Pogwizd SM, Ramalingam S, Sankaran R, Rajasekaran NS (2018) Evidence for a hyper-reductive redox in a sub-set of heart failure patients. J Transl Med 16:130

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Rebrin I, Zicker S, Wedekind KJ, Paetau-Robinson I, Packer L, Sohal RS (2005) Effect of antioxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouse. Free Radic Biol Med 39:549–557

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Schmidt HH, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A (2015) Antioxidants in translational medicine. Antioxid Redox Signal 23:1130–1143

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Duleh S, Wang X, Komirenko A, Margeta M (2016) Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Acta Neuropathol Commun 4:115

    PubMed  PubMed Central  Google Scholar 

  142. Estes ML, Ewing-Wilson D, Chou SM, Mitsumoto H, Hanson M, Shirey E, Ratliff NB (1987) Chloroquine neuromyotoxicity: clinical and pathologic perspective. Am J Med 82:447–455

    PubMed  CAS  Google Scholar 

  143. Kuncl RW, Duncan G, Watson D, Alderson K, Rogawski MA, Peper M (1987) Colchicine myopathy and neuropathy. N Engl J Med 316:1562–1568

    PubMed  CAS  Google Scholar 

  144. Casado E, Gratacos J, Tolosa C, Martinez JM, Ojanguren I, Ariza A, Real J, Sanjuan A, Larrosa M (2006) Antimalarial myopathy: an underdiagnosed complication? Prospective longitudinal study of 119 patients. Ann Rheum Dis 65:385–390

    PubMed  CAS  Google Scholar 

  145. Zirin J, Nieuwenhuis J, Perrimon N (2013) Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 11:e1001708

    PubMed  PubMed Central  Google Scholar 

  146. Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord 18:521–529

    PubMed  Google Scholar 

  147. Nishino I (2006) Autophagic vacuolar myopathy. Semin Pediatr Neurol 13:90–95

    PubMed  Google Scholar 

  148. Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, Margeta M (2012) Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study. PLoS ONE 7:e36221

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Dialynas G, Shrestha OK, Ponce JM, Zwerger M, Thiemann DA, Young GH, Moore SA, Yu L, Lammerding J, Wallrath LL (2015) Myopathic lamin mutations cause reductive stress and activate the Nrf2/Keap-1 pathway. PLoS Genet 11:e1005231

    PubMed  PubMed Central  Google Scholar 

  150. Bhide S, Trujillo AS, O’Connor MT, Young GH, Cryderman DE, Chandran S, Nikravesh M, Wallrath LL, Melkani GC (2018) Increasing autophagy and blocking Nrf2 suppress laminopathy-induced age-dependent cardiac dysfunction and shortened lifespan. Aging Cell 17:e12747

    PubMed  PubMed Central  Google Scholar 

  151. Zhang L, Chen CL, Kang PT, Jin Z, Chen YR (2011) Differential protein acetylation assists import of excess SOD2 into mitochondria and mediates SOD2 aggregation associated with cardiac hypertrophy in the murine SOD2-tg heart. Free Radic Biol Med 108:595–609

  152. Takahashi N, Chen HY, Harris IS, Stover DG, Selfors LM, Bronson RT, Deraedt T, Cichowski K, Welm AL, Mori Y, Mills GB, Brugge JS (2018) Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell 33:985–1003.e7

    PubMed  PubMed Central  CAS  Google Scholar 

  153. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Chio IIC, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K, Palm W, Wilson J, Sangar V, Hao Y, Öhlund D, Wright K, Filippini D, Lee EJ, Da Silva B, Schoepfer C, Wilkinson JE, Buscaglia JM, DeNicola GM, Tiriac H, Hammell M, Crawford HC, Schmidt EE, Thompson CB, Pappin DJ, Sonenberg N, Tuveson DA (2016) NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166:963–976

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Sun J, Wang B, Liu Y, Zhang L, Ma A, Yang Z, Ji Y, Liu Y (2014) Transcription factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and positively regulates p53 expression. Cancer Lett 355:25–33

    PubMed  CAS  Google Scholar 

  156. Reid MB, Haack KE, Franchek KM, Valberg PA, Kobzik L, West MS (1992) Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol (1985) 73:1797–804

  157. Reid MB, Stokić DS, Koch SM, Khawli FA, Leis AA (1994) N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest 94:2468–2474

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548

    PubMed  CAS  Google Scholar 

  159. Reid MB (1985) Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90(724–731):2001

    Google Scholar 

  160. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    PubMed  CAS  Google Scholar 

  161. Camera DM, Smiles WJ, Hawley JA (2016) Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 98:131–143

    PubMed  CAS  Google Scholar 

  162. Merry TL, Ristow M (2016) Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol 594:5195–5207

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Magbanua MJ, Richman EL, Sosa EV, Jones LW, Simko J, Shinohara K, Haqq CM, Carroll PR, Chan JM (2014) Physical activity and prostate gene expression in men with low-risk prostate cancer. Cancer Causes Control 25:515–523

    PubMed  PubMed Central  Google Scholar 

  165. Mendham AE, Duffield R, Coutts AJ, Marino FE, Boyko A, McAinch AJ, Bishop DJ (1985) Mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men. J Appl Physiol 121(1326–1334):2016

    Google Scholar 

  166. Done AJ, Gage MJ, Nieto NC, Traustadóttir T (2016) Exercise-induced Nrf2-signaling is impaired in aging. Free Radic Biol Med 96:130–138

    PubMed  CAS  Google Scholar 

  167. Angulo J, El Assar M, Rodríguez-Mañas L (2016) Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 50:1–32

    PubMed  Google Scholar 

  168. Done AJ, Traustadóttir T (2016) Nrf2 mediates redox adaptations to exercise. Redox Biol 10:191–199

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Konopka AR, Laurin JL, Musci RV, Wolff CA, Reid JJ, Biela LM, Zhang Q, Peelor FF 3rd, Melby CL, Hamilton KL, Miller BF (2017) Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults. Geroscience 39:175–186

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Brzeszczyńska J, Meyer A, McGregor R, Schilb A, Degen S, Tadini V et al (2018) Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. J Cachexia Sarcopenia Muscle 9:93–105

    PubMed  Google Scholar 

  171. Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Pond A, Grim-Stieger M, Cvecka J, Sedliak M, Tirpakova V, Mayr W, Sarabon N, Rossini K, Barberi L, De Rossi M, Romanello V, Boncompagni S, Musaro A, Sandri M, Protasi F, Carraro U, Kern H (2015) Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci 70:163–173

    PubMed  CAS  Google Scholar 

  172. Cobley JN, Sakellariou GK, Owens DJ, Murray S, Waldron S, Gregson W, Fraser WD, Burniston JG, Iwanejko LA, McArdle A, Morton JP, Jackson MJ, Close GL (2014) Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic Biol Med 70:23–32

    PubMed  CAS  Google Scholar 

  173. Upadhyay S, Dixit M (2015) Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev 2015:504253

    PubMed  PubMed Central  Google Scholar 

  174. Richardson RS, Donato AJ, Uberoi A, Wray DW, Lawrenson L, Nishiyama S, Bailey DM (2007) Exercise-induced brachial artery vasodilation: role of free radicals. Am J Physiol Heart Circ Physiol 292:H1516–1522

    PubMed  CAS  Google Scholar 

  175. Trinity JD, Broxterman RM, Richardson RS (2016) Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med 98:90–102

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Mitchell DL, DiMario JX (2010) Bimodal, reciprocal regulation of fibroblast growth factor receptor 1 promoter activity by BTEB1/KLF9 during myogenesis. Mol Biol Cell 21:2780–2787

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260

    PubMed  PubMed Central  Google Scholar 

  178. Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14:58–74

    PubMed  CAS  Google Scholar 

  179. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr) 36:545–547

    CAS  Google Scholar 

  180. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    PubMed  Google Scholar 

  181. Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–1581

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Vasilaki A, Jackson MJ (2013) Role of reactive oxygen species in the defective regeneration seen in aging muscle. Free Radic Biol Med 65:317–323

    PubMed  CAS  Google Scholar 

  183. Brzeszczyńska J, Johns N, Schilb A, Degen S, Degen M, Langen R, Schols A, Glass DJ, Roubenoff R, Greig CA, Jacobi C, Fearon KCh, Ross JA (2016) Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly. Aging (Albany NY) 8:1690–1702

    Google Scholar 

  184. Klotz LO, Steinbrenner H (2017) Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol 13:646–654

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Crilly MJ, Tryon LD, Erlich AT, Hood DA (1985) The role of Nrf2 in skeletal muscle contractile and mitochondrial function. J Appl Physiol 121(730–740):2016

    Google Scholar 

  186. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13:24–57

    PubMed  PubMed Central  CAS  Google Scholar 

  187. Tubaro C, Arcuri C, Giambanco I, Donato R (2010) S100B protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression. J Cell Physiol 223:270–282

    PubMed  CAS  Google Scholar 

  188. Beccafico S, Riuzzi F, Puglielli C, Mancinelli R, Fulle S, Sorci G, Donato R (2011) Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. Age (Dordr) 33:523–541

    CAS  Google Scholar 

  189. Morozzi G, Beccafico S, Bianchi R, Riuzzi F, Bellezza I, Giambanco I, Arcuri C, Minelli A, Donato R (2017) Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death Differ 24:2077–2088

    PubMed  PubMed Central  CAS  Google Scholar 

  190. Kombairaju P, Kerr JP, Roche JA, Pratt SJ, Lovering RM, Sussan TE, Kim JH, Shi G, Biswal S, Ward CW (2014) Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle. Front Physiol 5:57

    PubMed  PubMed Central  Google Scholar 

  191. Al-Sawaf O, Fragoulis A, Rosen C, Keimes N, Liehn EA, Hölzle F, Kan YW, Pufe T, Sönmez TT, Wruck CJ (2014) Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury. J Pathol 234:538–547

    PubMed  CAS  Google Scholar 

  192. Whitehead NP, Yeung EW, Froehner SC, Allen DG (2010) Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS ONE 5:e15354

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Sun CC, Li SJ, Yang CL, Xue RL, Xi YY, Wang L, Zhao QL, Li DJ (2015) Sulforaphane attenuates muscle inflammation in dystrophin-deficient mdx Mice via NF-E2-related Factor 2 (Nrf2)-mediated Inhibition of NF-κB signaling pathway. J Biol Chem 290:17784–17795

    PubMed  CAS  Google Scholar 

  194. Ding Y, Choi KJ, Kim JH, Han X, Piao Y, Jeong JH, Choe W, Kang I, Ha J, Forman HJ, Lee J, Yoon KS, Kim SS (2008) Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation. Am J Pathol 172:1529–1541

    PubMed  PubMed Central  CAS  Google Scholar 

  195. Watson JD (2014) Type 2 diabetes as a redox disease. Lancet 383:841–843

    PubMed  Google Scholar 

  196. Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG (2018) N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 115:288–297

    PubMed  CAS  Google Scholar 

  197. Riuzzi F, Sorci G, Sagheddu R, Donato R (2012) HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK- and myogenin-dependent repression of Pax7 transcription. J Cell Sci 125:1440–1454

    PubMed  CAS  Google Scholar 

  198. Horn A, Van der Meulen JH, Defour A, Hogarth M, Sreetama SC, Reed A, Scheffer L, Chandel NS, Jaiswal JK (2017) Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal 10(495)

  199. Henríquez-Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, Sylow L, Holmdahl R, Richter EA, Jaimovich E, Jensen TE (2019) Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10:4623

    PubMed  PubMed Central  Google Scholar 

  200. Cotter MA, Cameron NE, Robertson S, Ewing I (1993) Polyol pathway-related skeletal muscle contractile and morphological abnormalities in diabetic rats. Exp Physiol 78:139–155

    PubMed  CAS  Google Scholar 

  201. He Q, Wang M, Petucci C, Gardell SJ, Han X (2013) Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells. Int J Biochem Cell Biol 45:2749–2755

    PubMed  CAS  Google Scholar 

  202. Singh F, Charles AL, Schlagowski AI, Bouitbir J, Bonifacio A, Piquard F, Krähenbühl S, Geny B, Zoll J (1853) Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim Biophys Acta 1574–1585:2015

    Google Scholar 

  203. Bouitbir J, Singh F, Charles AL, Schlagowski AI, Bonifacio A, Echaniz-Laguna A, Geny B, Krähenbühl S, Zoll J (2016) Statins trigger mitochondrial reactive oxygen species-induced apoptosis in glycolytic skeletal muscle. Antioxid Redox Signal 24:84–98

    PubMed  CAS  Google Scholar 

  204. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919

    PubMed  CAS  Google Scholar 

  205. Niu W, Wang J, Qian J, Wang M, Wu P, Chen F, Yan S (2018) Allosteric control of human cystathionine β-synthase activity by a redox active disulfide bond. J Biol Chem 293:2523–2533

    PubMed  PubMed Central  CAS  Google Scholar 

  206. Veeranki S, Tyagi SC (2015) Role of hydrogen sulfide in skeletal muscle biology and metabolism. Nitric Oxide 46:66–71

    PubMed  CAS  Google Scholar 

  207. Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, Moore PK, Wang X, Wang H, Zhang Z, Yu Y, Ferro A, Huang Z, Ji Y (2016) Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes 65:3171–3184

    PubMed  CAS  PubMed Central  Google Scholar 

  208. Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13

    PubMed  CAS  Google Scholar 

  209. Parsanathan R, Jain SK (2018) Hydrogen sulfide increases glutathione biosynthesis, and glucose uptake and utilisation in C2C12 mouse myotubes. Free Radic Res 52:288–303

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J (2015) Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med 86:37–46

  211. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507–515

    PubMed  CAS  Google Scholar 

  212. Masiero E, Sandri M (2010) Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy 6:307–309

    PubMed  CAS  Google Scholar 

  213. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42

    PubMed  Google Scholar 

  214. Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16:1313–1320

    PubMed  CAS  Google Scholar 

  215. Margaritelis NV, Kyparos A, Paschalis V, Theodorou AA, Panayiotou G, Zafeiridis A, Dipla K, Nikolaidis MG, Vrabas IS (2014) Reductive stress after exercise: The issue of redox individuality. Redox Biol 2:520–528

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Rankinen T, Bouchard C (2008) Gene-physical activity interactions: overview of human studies. Obesity 16:S47–S50

    PubMed  CAS  Google Scholar 

  217. Gomez-Cabrera MC, Ristow M, Viña J (2012) Antioxidant supplements in exercise: worse than useless? Am J Physiol Endocrinol Metab 302:E476–477

    PubMed  CAS  Google Scholar 

  218. Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C, Santoro A (2017) Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 75:442–455

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ministero dell’Istruzione, dell’Università e della Ricerca, Italy (FIRB RBFR12BUMH) (I.B.); Ministero dell’Istruzione, dell’Università e della Ricerca, Italy (PRIN 2012N8YJC3), Fondazione Cassa di Risparmio di Perugia (Project 2015.0325.021) and Parent Project Onlus, Italia (G.S.); and Ministero dell’Istruzione, dell’Università e della Ricerca, Italy (PRIN 2010R8JK2X_004), Association Française contre les Myopathies (Project 16812), Associazione Italiana per la Ricerca sul Cancro (Project 17581) and Fondazione Cassa di Risparmio di Perugia (CRP 2016-0136.021) (R.D.). The authors declare no conflict of interest. We wish to thank the reviewers for helping us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Donato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellezza, I., Riuzzi, F., Chiappalupi, S. et al. Reductive stress in striated muscle cells. Cell. Mol. Life Sci. 77, 3547–3565 (2020). https://doi.org/10.1007/s00018-020-03476-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03476-0

Keywords

Navigation