Skip to main content
Log in

Fabrication of Poly(N-isopropylacrylamide) with Higher Deposition Rate and Easier Phase Transition by Initiated Plasma Enhanced Chemical Vapor Deposition

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study demonstrates the fabrication of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) thin films using the initiated PECVD (i-PECVD) method, in which the initiator tert-butyl peroxide was used together with the monomer NIPAAm. The deposition rates, wettability properties, and the low critical solution temperature (LCST) of i-PECVD deposited PNIPAAM were compared with those of classical continuous wave and pulsed PECVD techniques without TBPO. The effect of plasma power, plasma operation mode, substrate temperature and the presence of initiator on the deposition rate and wettability properties of PNIPAAm thin films were investigated. The results showed that it was possible to tune the deposition rate and wettability properties of PNIPAAm thin films by changing the PECVD parameters. The highest deposition rate (47.9 nm/min) and the largest contact angle difference (18.3°) depending on the temperature were obtained using the i-PECVD method. The LCST value of i-PECVD-PNIPAAm was able to be tuned between 31 and 34 °C. Such value was dependent on the presence and amount of the initiator. On the basis of these results, the i-PECVD method can be considered as the most proper approach for producing of PNIPAAm with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguilar MR, San Román J (2019) Introduction to smart polymers and their applications. smart polymers and their applications. Elsevier, Amsterdam, pp 1–11

    Google Scholar 

  2. Lu C, Urban MW (2018) Stimuli-responsive polymer nano-science: shape anisotropy, responsiveness, applications. Prog Polym Sci 78:24–46

    Article  CAS  Google Scholar 

  3. Zhang K, Wang M, Shi YD, Chen YF, Zeng JB, Huang J (2016) Magnetic responsive polymer nanocomposites with in–situ tunable anisotropy by magnetic self-organization. ChemistrySelect 1(17):5542–5546

    Article  CAS  Google Scholar 

  4. Mirza I, Saha S (2019) Fabrication of topologically anisotropic microparticles and their surface modification with pH responsive polymer brush. Mater Sci Eng C 104:109894

    Article  CAS  Google Scholar 

  5. Wang W, Zhou M (2010) Degradation of trichloroethylene using solvent-responsive polymer coated Fe nanoparticles. Coll Surf A 369(1–3):232–239

    CAS  Google Scholar 

  6. Zhang H, Li J, Cui H, Li H, Yang F (2015) Forward osmosis using electric-responsive polymer hydrogels as draw agents: influence of freezing–thawing cycles, voltage, feed solutions on process performance. Chem Eng J 259:814–819

    Article  CAS  Google Scholar 

  7. Guo J, Zhou B, Yang C, Dai Q, Kong L (2019) Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv Func Mater 29:1902898

    Article  CAS  Google Scholar 

  8. Guo Z, Liu H, Wu Y, Wang X, Wu D (2019) Design and fabrication of pH-responsive microencapsulated phase change materials for multipurpose applications. React Funct Polym 140:111–123

    Article  CAS  Google Scholar 

  9. Li Y, Li J (2018) Fabrication of reversible thermoresponsive thin films on wood surfaces with hydrophobic performance. Prog Org Coat 119:15–22

    Article  CAS  Google Scholar 

  10. Tang Z, Akiyama Y, Itoga K, Kobayashi J, Yamato M, Okano T (2012) Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device. Biomaterials 33(30):7405–7411

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, An J, Zhong Q, Müller-Buschbaum P, Wang J (2017) Smart control of cotton fabric comfort by cross-linking thermo-responsive poly (2-(2-methoxyethoxy) ethoxyethyl methacrylate-co-ethylene glycol methacrylate). Text Res J 87(13):1620–1630

    Article  CAS  Google Scholar 

  12. Gong D, Cao T, Han S-C, Zhu X, Iqbal A, Liu W, Qin W, Guo H (2017) Fluorescence enhancement thermoresponsive polymer luminescent sensors based on BODIPY for intracellular temperature. Sens Actuators B Chem 252:577–583

    Article  CAS  Google Scholar 

  13. Balachandra A, Chan EC, Paul JP, Ng S, Chrysostomou V, Ngo S, Mayadunne R, van Wijngaarden P (2019) A biocompatible reverse thermoresponsive polymer for ocular drug delivery. Drug Deliv 26(1):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang P, She P, He J, Xiang Z, Li Z, Cao Y, Zhang X (2019) Full-biodegradable polylactide-based thermoresponsive copolymer with a wide temperature range: synthesis, characterization and thermoresponsive properties. React Funct Polym 142:128–133

    Article  CAS  Google Scholar 

  15. Golshaei P, Güven O (2017) Chemical modification of PET surface and subsequent graft copolymerization with poly (N-isopropylacrylamide). React Funct Polym 118:26–34

    Article  CAS  Google Scholar 

  16. Prasannan A, Tsai H-C, Hsiue G-H (2018) Formulation and evaluation of epinephrine-loaded poly (acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery. React Funct Polym 124:40–47

    Article  CAS  Google Scholar 

  17. Alf ME, Hatton TA, Gleason KK (2011) Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. Polymer 52(20):4429–4434

    Article  CAS  Google Scholar 

  18. Ryu H-Y, Yoon SH, Han D-H, Hafeez H, Paluvai NR, Lee CS, Park J-G (2016) Fabrication of hydrophobic/hydrophilic switchable aluminum surface using poly (N-isopropylacrylamide). Prog Org Coat 99:295–301

    Article  CAS  Google Scholar 

  19. Guan Y, Zhang Y (2011) PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter 7(14):6375–6384

    Article  CAS  Google Scholar 

  20. Nagase K, Yamato M, Kanazawa H, Okano T (2018) Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153:27–48

    Article  CAS  PubMed  Google Scholar 

  21. Weder G, Guillaume-Gentil O, Matthey N, Montagne F, Heinzelmann H, Vörös J, Liley M (2010) The quantification of single cell adhesion on functionalized surfaces for cell sheet engineering. Biomaterials 31(25):6436–6443

    Article  CAS  PubMed  Google Scholar 

  22. Turan E, Caykara T (2011) A facile route to end-functionalized poly (N-isopropylacrylamide) brushes synthesized by surface-initiated SET–LRP. React Funct Polym 71(11):1089–1095

    Article  CAS  Google Scholar 

  23. Vachaudez M, D’hooge D, Socka M, Libiszowski J, Coulembier O, Reyniers M-F, Duda A, Marin G, Dubois P (2013) Inverse dependencies on the polymerization rate in atom transfer radical polymerization of N-isopropylacrylamide in aqueous medium. React Funct Polym 73(3):484–491

    Article  CAS  Google Scholar 

  24. Tamirisa PA, Hess DW (2006) Water and moisture uptake by plasma polymerized thermoresponsive hydrogel films. Macromolecules 39(20):7092–7097

    Article  CAS  Google Scholar 

  25. Koenig M, Rodenhausen KB, Rauch S, Bittrich E, Eichhorn K-J, Schubert M, Stamm M, Uhlmann P (2018) Salt sensitivity of the thermoresponsive behavior of PNIPAAm brushes. Langmuir 34(7):2448–2454

    Article  CAS  PubMed  Google Scholar 

  26. Osváth Z, Tóth T, Iván B (2017) Sustained Drug Release by thermoresponsive Sol–Gel hybrid hydrogels of poly(N-Isopropylacrylamide-co-3-(Trimethoxysilyl) propyl methacrylate) copolymers. Macromol Rapid Commun 38(6):1600724

    Article  CAS  Google Scholar 

  27. Elashnikov R, Radocha M, Rimpelova S, Švorčík V, Lyutakov O (2015) Thickness and substrate dependences of phase transition, drug release and antibacterial properties of PNIPAm-co-AAc films. RSC Adv 5(105):86825–86831

    Article  CAS  Google Scholar 

  28. Şakalak H, Karaman M (2019) All-dry synthesis of poly (2-ethylhexyl acrylate) nanocoatings using initiated chemical vapor deposition method. Prog Org Coat 132:283–287

    Article  CAS  Google Scholar 

  29. Amelio A, Genduso G, Vreysen S, Luis P, Van der Bruggen B (2014) Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives. Green Chem 16(6):3045–3063

    Article  CAS  Google Scholar 

  30. Dion CD, Tavares JR (2013) Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a practical review). Powder Technol 239:484–491

    Article  CAS  Google Scholar 

  31. Cheng C, Gupta M (2018) Roll-to-roll surface modification of cellulose paper via initiated chemical vapor deposition. Ind Eng Chem Res 57(34):11675–11680

    Article  CAS  Google Scholar 

  32. Şakalak H, Yılmaz K, Gürsoy M, Karaman M (2020) Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates. Chem Eng Sci 215:115466

    Article  CAS  Google Scholar 

  33. Yılmaz K, Sakalak H, Gürsoy M, Karaman M (2019) Initiated chemical vapor deposition of poly(Ethylhexyl Acrylate) films in large scale batch reactor. Ind Eng Chem Res 58:14795–14801

    Article  CAS  Google Scholar 

  34. Fo Loyer, Combrisson A, Omer K, Moreno-Couranjou M, Choquet P, Boscher ND (2018) Thermoresponsive water-soluble polymer layers and water-stable copolymer layers synthesized by atmospheric plasma initiated chemical vapor deposition. ACS Appl Mater İnterfaces 11(1):1335–1343

    Google Scholar 

  35. Yartaşı Y, Karaman M (2019) Plasma enhanced chemical vapor deposition of poly(Cyclohexyl Methacrylate) as a sacrificial thin film. Plasma Chem Plasma Process 40:1–13

    Google Scholar 

  36. Gorga RE, Lau KK, Gleason KK, Cohen RE (2006) The importance of interfacial design at the carbon nanotube/polymer composite interface. J Appl Polym Sci 102(2):1413–1418

    Article  CAS  Google Scholar 

  37. Gürsoy M, Karaman M (2016) Hydrophobic coating of expanded perlite particles by plasma polymerization. Chem Eng J 284:343–350

    Article  CAS  Google Scholar 

  38. Truica-Marasescu F, Jedrzejowski P, Wertheimer MR (2004) Hydrophobic recovery of vacuum ultraviolet irradiated polyolefin surfaces. Plasma Process Polym 1(2):153–163

    Article  CAS  Google Scholar 

  39. Rupper P, Vandenbossche M, Bernard L, Hegemann D, Heuberger M (2017) Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir 33(9):2340–2352

    Article  CAS  PubMed  Google Scholar 

  40. Debarnot D, Mérian T, Poncin-Epaillard F (2011) Film chemistry control and growth kinetics of pulsed plasma-polymerized aniline. Plasma Chem Plasma Process 31(1):217–231

    Article  CAS  Google Scholar 

  41. Kumar A, Al-Jumaili A, Prasad K, Bazaka K, Mulvey P, Warner J, Jacob MV (2019) Pulse plasma deposition of Terpinen-4-ol: an insight into polymerization mechanism and enhanced antibacterial response of developed thin films. Plasma Chem Plasma Process 40:1–17

    CAS  Google Scholar 

  42. Gürsoy M, Karaman M (2018) Improvement of wetting properties of expanded perlite particles by an organic conformal coating. Prog Org Coat 120:190–197

    Article  CAS  Google Scholar 

  43. Drews J, Launay H, Hansen CM, West K, Hvilsted S, Kingshott P, Almdal K (2008) Hydrolysis and stability of thin pulsed plasma polymerised maleic anhydride coatings. Appl Surf Sci 254(15):4720–4725

    Article  CAS  Google Scholar 

  44. Coclite AM, Gleason KK (2012) Initiated PECVD of organosilicon coatings: a new strategy to enhance monomer structure retention. Plasma Process Polym 9(4):425–434

    Article  CAS  Google Scholar 

  45. Teare D, Barwick D, Schofield W, Garrod R, Beeby A, Badyal J (2005) Functionalization of solid surfaces with thermoresponsive protein-resistant films. J Phys Chem B 109(47):22407–22412

    Article  CAS  PubMed  Google Scholar 

  46. Pena-Francesch A, Montero L, Borrós S (2014) Tailoring the LCST of thermosensitive hydrogel thin films deposited by iCVD. Langmuir 30(24):7162–7167

    Article  CAS  PubMed  Google Scholar 

  47. Muralter F, Perrotta A, Coclite AM (2018) Thickness-dependent swelling behavior of vapor-deposited hydrogel thin films. In: Multidisciplinary digital publishing institute proceedings, vol 13, p 757

  48. Salzmann P, Perrotta A, Coclite AM (2018) Different response kinetics to temperature and water vapor of acrylamide polymers obtained by initiated chemical vapor deposition. ACS Appl Mater Interfaces 10(7):6636–6645

    Article  CAS  PubMed  Google Scholar 

  49. Dubey R, Rajesh Y, More M (2015) Synthesis and characterization of SiO2 nanoparticles via sol–gel method for industrial applications. Mater Today Proc 2(4–5):3575–3579

    Article  Google Scholar 

  50. Karaman M, Gürsoy M, Aykül F, Tosun Z, Kars MD, Yildiz HB (2017) Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Sci Technol 19(8):085503

    Article  CAS  Google Scholar 

  51. Greczynski G, Hultman L (2019) X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog Mater Sci 107:100591

    Article  CAS  Google Scholar 

  52. Scofield JH (1976) Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8(2):129–137

    Article  CAS  Google Scholar 

  53. Vollmert B (2013) Grundriß der makromolekularen Chemie. Springer, Berlin

    Google Scholar 

  54. Yasuda H, Wang CR (1985) Plasma polymerization investigated by the substrate temperature dependence. J Polym Sci Polym Chem Edit 23:87–106. https://doi.org/10.1002/pol.1985.170230110

    Article  CAS  Google Scholar 

  55. Godyak V (2011) Electrical and plasma parameters of ICP with high coupling efficiency. Plasma Sources Sci Technol 20(2):025004

    Article  Google Scholar 

  56. d’Agostino R, Cramarossa F, Fracassi F, Illuzzi F (1990) Plasma polymerization of fluorocarbons. Plasma Depos Treat Etch Polym 2:95–162

    Google Scholar 

  57. Gürsoy M, Ucar T, Tosun Z, Karaman M (2016) Initiation of 2-hydroxyethyl methacrylate polymerization by tert-butyl peroxide in a planar PECVD system. Plasma Process Polym 13(4):438–446. https://doi.org/10.1002/ppap.201500091

    Article  CAS  Google Scholar 

  58. Karaman M, Gürsoy M, Kus M, Özel F, Yenel E, Sahin ÖG, Kivrak HD (2017) Chemical and physical modification of surfaces. Surf Treat Biol Chem Phys Appl, 23–66

  59. Li J, Zhai M, Yi M, Gao H, Ha H (1999) Radiation grafting of thermo-sensitive poly (NIPAAm) onto silicone rubber. Radiat Phys Chem 55(2):173–178

    Article  CAS  Google Scholar 

  60. Sa L, He C (2011) Effect of polymer deposition method on thermoresponsive polymer films and resulting cellular behavior. Langmuir 28(4):2281–2287

    Google Scholar 

  61. Çıtak E, İstanbullu B, Şakalak H, Gürsoy M, Karaman M (2019) All-Dry hydrophobic functionalization of paper surfaces for efficient transfer of CVD graphene. Macromol Chem Phys 220(22):1900277

    Article  CAS  Google Scholar 

  62. Clodt JI, Filiz V, Rangou S, Buhr K, Abetz C, Höche D, Hahn J, Jung A, Abetz V (2013) Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes. Adv Func Mater 23(6):731–738

    Article  CAS  Google Scholar 

  63. Alf ME, Hatton TA, Gleason KK (2011) Insights into thin, thermally responsive polymer layers through quartz crystal microbalance with dissipation. Langmuir 27(17):10691–10698

    Article  CAS  PubMed  Google Scholar 

  64. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  65. Xia Y, Burke NA, Stöver HD (2006) End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39(6):2275–2283

    Article  CAS  Google Scholar 

  66. Cui Y, Tao C, Tian Y, He Q, Li J (2006) Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control. Langmuir 22(19):8205–8208

    Article  CAS  PubMed  Google Scholar 

  67. Lima AC, Song W, Blanco-Fernandez B, Alvarez-Lorenzo C, Mano JF (2011) Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces. Pharm Res 28(6):1294–1305

    Article  CAS  PubMed  Google Scholar 

  68. Beamson G, Briggs D (1993) High resolution XPS of organic polymers: the Scienta ESCA300 Database. J Chem Educ 70(1):A25. https://doi.org/10.1021/ed070pa25.5

    Article  Google Scholar 

  69. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33(11):1088–1118

    Article  CAS  Google Scholar 

  70. Yavuz MS, Citir M, Cavusoglu H, Demirel G (2017) Measuring temperature change at the nanometer scale on gold nanoparticles by using thermoresponsive PEGMA polymers. ChemNanoMat 3(7):496–502

    Article  CAS  Google Scholar 

  71. Kotsuchibashi Y, Narain R (2014) Dual-temperature and pH responsive (ethylene glycol)-based nanogels via structural design. Polymer Chemistry 5(8):3061–3070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank MCM ARGE Ltd. company for their help in reactor design and optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Gürsoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 12261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürsoy, M. Fabrication of Poly(N-isopropylacrylamide) with Higher Deposition Rate and Easier Phase Transition by Initiated Plasma Enhanced Chemical Vapor Deposition. Plasma Chem Plasma Process 40, 1063–1079 (2020). https://doi.org/10.1007/s11090-020-10069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10069-z

Keywords

Navigation