Skip to main content
Log in

Moisture sorption measurements and Thermophysical characterization of the Taraxacum officinale leaves and root

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper aims at investigating the hygroscopic behavior and the thermodynamic characterization of the dandelion (Taraxacum officinale) leaves and root during moisture sorption phenomena. This study has been conducted by using the saturated salt solutions at different temperatures 30 °C, 40 °C and 50 °C. The obtained isotherms curves of all samples were of sigmoidal Type II. The optimal water activity was determined. Moreover, thirteen models are fitted and compared in order to choose the most suitable model that perfectly represents the relationship between moisture sorption content and water activity. The comparison of these models has been based on the coefficient of correlation as well as the standard error of estimate. Furthermore, several equations are used to determine the net isosteric heat of sorption, the sorption differential entropy, the spreading pressure, the specific surface area of sorption, and the enthalpy-entropy compensation theory. All these thermodynamic properties allow us to analyze the thermodynamic behavior of the leaves and the dandelion root during the sorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aw :

water activity (dimensionless)

T:

absolute temperature (K)

Q st :

isosteric heat of sorption (kJ.mol−1)

q st :

net isosteric heat of sorption (kJ.mol−1)

R:

universal gas constant (R = 83,145 J.mol−1.K−1)

ΔH υap :

vaporization latent heat of pure water (43,53 kJ.mol−1) à 35 °C

ΔS :

differential entropy of sorption (J.mol−1.K−1)

ΔG :

Gibbs free energy (J.mol−1)

Tβ :

isokinitic temperature (K)

ΔGβ :

free energy at the temperature Tβ (J.mol−1)

MSE:

mean square of error

EMC:

equilibrium moisture content

r:

correlation coefficient

des:

desorption

ads:

adsorption

d.b:

dry basis

Rh:

Relative humidity (%)

A, B, C, K, N, a, b, n, c:

Model coefficients

M h :

mass of dry matter (kg)

X(t):

moisture content (% d.b)

Xeq:

equilibrium moisture content (% d.b)

pred:

predicted

KB :

constant of Boltzmann

Am :

The area of a water molecule (1.06 × 10−19 m2)

Φ:

Spreading pressure

References

  1. Mir MA, Sawhney SS, Jassal MMS (2013) Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker J Pharm Pharmacol 2:001–005

    Google Scholar 

  2. Kirschner J, Stepanek J (1994) Clonality as part of the evaluation process in Taraxacum. FOLIA GEOBOT 29:265–275

    Article  Google Scholar 

  3. Escudero NL, De Arellano ML, Fernández S, Albarracín G, Mucciarelli S (2003) Taraxacum officinale as a food source. Plant Foods Hum Nutr 58:1–10

    Article  Google Scholar 

  4. Williams CA, Goldstone F, Greenham J (1996) Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry. 42:121–127

    Article  Google Scholar 

  5. Stewart-Wade SM, Neumann S, Collins LL, Boland GJ (2002) The biology of Canadian weeds. 117. Taraxacum officinale G. H. Weber ex Wiggers. Can J Plant Sci 82:825–853

    Article  Google Scholar 

  6. Naji A, Idlimam A, Kouhila M (2010) Sorption isotherms and thermodynamic properties of powdered Milk. Chem Eng J 197:1109–1125

    Google Scholar 

  7. Lomauro CJ, Bakshi AS, Labuza TP (1985) Evaluation of food moisture sorption isotherm equations. Part I: fruit, vegetable and meat products. Lebensm.-Wiss. Technol. 18:111–117

    Google Scholar 

  8. Mghazli S, Idlimam A, Mahrouz M, Lahnine L, Hidar N, Ouhammou M, Mouhib M, Zantar S, Bouchdoug M (2016) Comparative moisture sorption isotherms, modelling and isosteric heat of sorption of controlled and irradiated Moroccan rosemary leaves. Ind Crop Prod 88:28–35

    Article  Google Scholar 

  9. Oyeladea OJ, Tunde-Akintundeb TY, Igbekac JC, Okeb MO, Rajid OY (2008) Modelling moisture sorption isotherms for maize flour. J Stored Prod Res 44:179–185

    Article  Google Scholar 

  10. Guilan P, Xiaoguang C, Wenfu W, Xiujuan J (2007) Modeling of water sorption isotherm for cornstarch. J Food Eng 80:562–567

    Article  Google Scholar 

  11. Tunç S, Duman O (2007) Thermodynamic properties and moisture adsorption isotherms of cottonseed protein isolate and different forms of cottonseed samples. J Food Eng 81:133–143

    Article  Google Scholar 

  12. Jingjing P, Jianshun SZ (2012) Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Build Environ 48:66–76

    Article  Google Scholar 

  13. Wolf W, Spiess WEL, Jung G (1985) Standardization of isotherm measurements (cost-project 90 and 90 bis): Simatos D, Mullon JL (Eds.). Properties of Water in Foods. Springer Netherlands, pp: 661–679. ISBN 978-94-010-8756-8

  14. Kammoun BA, Mihoubi NB, Kechaou N (2012) Moisture sorption isotherms – experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chem 132:1728–1735

    Article  Google Scholar 

  15. Mahbubul M, Sourav M, Kyaw T, Kazuhide T, Bidyut BS (2018) Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. Int J Heat Mass Transf 122:795–805

    Article  Google Scholar 

  16. Kapsalis JG (1987) Influences of hysteresis and temperature on moisture sorption isotherms: Rockland LB, Beuchat LR (Eds.). Water activity: theory and applications to food. New York and Basel, pp 173-174

  17. Al-Muhtaseb AH, Mcminn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: a review. Food Bioprod Process 80:118–128

    Article  Google Scholar 

  18. Moraes K, Pinto LAA (2012) Desorption isotherms and thermodynamics properties of anchovy in natura and enzymatic modified paste. J Food Eng 110:507–513

    Article  Google Scholar 

  19. Andrade RDP, Lemus RM, Pérez CEC (2011) Models of sorption isotherms for food: uses and limitations. Vitae. 18:325–334

    Google Scholar 

  20. Yogendrarajah P, Samapundo S, Devlieghere F, Saeger SD, Meulenaer BD (2015) Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Sci Technol 64:177–188

    Article  Google Scholar 

  21. Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods: part 1—a review. Int J Food Sci Nutr 13:159–174

    Google Scholar 

  22. Iglesias HA, Chirife C (1976) A model for describing the water sorption behavior of foods. J Food Sci 41:984–992

    Article  Google Scholar 

  23. Lahnine L, Idlimam A, Mahrouz M, Jada A, Hanine H, Mouhib M, Zantar S, Kouhila M (2016) Adsorption measurements and modeling of thyme treated with gamma irradiation and thermal–biochemical treatment. Ind Crop Prod 88:36–43

    Article  Google Scholar 

  24. Rizvi RRH, Benado AL (1984) Thermodynamic properties of dehydrated foods. Food Technol 38:83–92

    Google Scholar 

  25. Aviara NA, Ajibolab OO, Dairoc UO (2002) Thermodynamics of moisture sorption in sesame seed, PH-postharvest technology. Bioprocess Biosyst Eng 83:423–431

    Article  Google Scholar 

  26. Kingsly ARP, Ileleji KE (2009) Sorption isotherm of corn distillers dried grains with solubles (DDGS) and its prediction using chemical composition. Food Chem 116:939–946

    Article  Google Scholar 

  27. Toğrul H, Arslan N (2007) Moisture sorption isotherm and thermodynamic, properties of walnut kernels. J Stored Prod Res 43:252–264

    Article  Google Scholar 

  28. Dent RW (1977) A multilayer theory for gas sorption. Part 1: sorption of a single gas. Text Res J 47:145–152

    Article  Google Scholar 

  29. Abdelhamid MB, Mihoubi D, Sghaier J, Bellagi A (2016) Water sorption isotherms and thermodynamic characteristics of hardened cement paste and mortar. Transport Porous Med 113:283–301

    Article  Google Scholar 

  30. Valdez-Niebla JA, Paredes-López O, Vargas-López JM, Hermindez-López D (1993) Moisture sorption isotherms and other physicochemical properties of nixtamalizedt amaranth flour. Food Chem 46:19–23

    Article  Google Scholar 

  31. Machhour H, Idlimam A, Mahrouz M, El Hadrami I, Kouhila M (2012) Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment. J Mater Environ Sci 3:232–247

    Google Scholar 

  32. Romani S, Rocculi P, Tappi S, Rosa MD (2016) Moisture adsorption behaviour of biscuit during storage investigated by using a new dynamic Dewpoint method. Food Chem 195:97–103

    Article  Google Scholar 

  33. Mathlouthi M, Rogé B (2003) Water vapour sorption isotherms and the caking of food powders. Food Chem 82:61–71

    Article  Google Scholar 

  34. Cenkowski S, Jayas DS, Hao D (1992) Latent heat of vaporization for selected foods and crops. Can Agr Eng 34:281–284

    Google Scholar 

  35. Ayala-Aponte AA (2016) Thermodynamic properties of moisture sorption in cassava flour. DYNA. 83:139–145

    Article  Google Scholar 

  36. Sawhney IK, Sarkar BC, Patil GR, Sharma H (2013) Moisture sorption isotherms and thermodynamic properties of whey protein concentrate powder from Buffalo skim milk. J Food Process Preserv 38:1787–1798

    Article  Google Scholar 

  37. Brunauer S, Deming LS, Deming WE, Troller E (1940) On the theory of Van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Mohammed Benouara, a phytotherapist in Settat, Morocco, for his valuable assistance in obtaining the Taraxacum Officinale during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Idlimam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussaoui, H., Kouhila, M., Lamsyehe, H. et al. Moisture sorption measurements and Thermophysical characterization of the Taraxacum officinale leaves and root. Heat Mass Transfer 56, 2065–2077 (2020). https://doi.org/10.1007/s00231-020-02838-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02838-5

Keywords

Navigation