Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Event-based models to understand the scale of the impact of extremes

Climate change entails an intensification of extreme weather events that can potentially trigger socioeconomic and energy system disruptions. As we approach 1 °C of global warming we should start learning from historical extremes and explicitly incorporate such events in integrated climate–economy and energy systems models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Burkhardt, P. South Africa’s rolling power blackouts enter ninth day. Bloomberg News (22 March 2019).

  2. Lewis, S. C., King, A. D. & Mitchell, D. M. Geophys. Res. Lett. 44, 9947–9956 (2017).

    Article  Google Scholar 

  3. Berlemann, M. & Wenzel, D. World Dev. 105, 231–247 (2018).

    Article  Google Scholar 

  4. Berlemann, M. & Wenzel, D. Econom. Bull. 36, 13 (2016).

    Google Scholar 

  5. Burke, M., Hsiang, S. M. & Miguel, E. Nature 527, 235–239 (2015).

    Article  Google Scholar 

  6. Pretis, F., Schwarz, M., Tang, K., Haustein, K. & Allen, M. R. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20160460 (2018).

    Article  Google Scholar 

  7. Piontek, F. et al. Environ. Resour. Econ. 73, 1357–1385 (2018).

    Article  Google Scholar 

  8. O’Neill, B. C. et al. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  9. Anderson, K. & Jewell, J. Nature 573, 348–349 (2019).

    Article  Google Scholar 

  10. Weyant, J. Rev. Environ. Econ. Policy 11, 115–137 (2017).

    Article  Google Scholar 

  11. Pindyck, R. S. Rev. Environ. Econ. Policy 11, 100–114 (2017).

    Article  Google Scholar 

  12. Pindyck, R. S. Pricing carbon when we don’t know the right price. Regulation 36, 43 (2013).

    Google Scholar 

  13. Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. Environ. Resour. Econ. 62, 329–357 (2015).

    Article  Google Scholar 

  14. Diaz, D. & Moore, F. Nat. Clim. Chang. 7, 774–782 (2017).

    Article  Google Scholar 

  15. Carleton, T. A. & Hsiang, S. M. Science 353, aad9837 (2016).

    Article  Google Scholar 

  16. Felbermayr, G. & Gröschl, J. J. Dev. Econ. 111, 92–106 (2014).

    Article  Google Scholar 

  17. Letta, M. & Tol, R. S. J. Environ. Resour. Econ. 73, 283–305 (2018).

    Article  Google Scholar 

  18. Dallmann, I. Environ. Resour. Econ. 72, 155–206 (2019).

    Article  Google Scholar 

  19. Marto, R., Papageorgiou, M. C. & Klyuev, M. V. J. Dev. Econ. 135, 574–586 (2017).

    Article  Google Scholar 

  20. Bakkensen, L. & Barrage, L. Climate Shocks, Cyclones, and Economic Growth: Bridging the Micro-Macro Gap NBER Working Paper No. 24893 (National Bureau of Economic Research 2018).

  21. Meinshausen, M. et al. Clim. Change 109, 213–241 (2011).

    Article  Google Scholar 

  22. Frieler, K. et al. Geosci. Model Dev. 10, 4321–4345 (2017).

    Article  Google Scholar 

  23. Schewe, J. et al. Nat. Commun. 10, 1005 (2019).

    Article  Google Scholar 

  24. Samaniego, L. et al. Nat. Clim. Change 8, 421–426 (2018).

    Article  Google Scholar 

  25. Dottori, F. et al. Nat. Clim. Chang. 8, 781–786 (2018).

    Article  Google Scholar 

  26. Eyring, V. et al. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  27. Warszawski, L. et al. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article  Google Scholar 

  28. Frieler, K. et al. Geosci. Model Dev. 10, 4321–4345 (2017).

    Article  Google Scholar 

  29. Fujimori, S. et al. Nat. Sustain. 2, 386–396 (2019).

    Article  Google Scholar 

  30. Hallegatte, S. & Rozenberg, J. Nat. Clim. Chang. 7, 250–256 (2017).

    Article  Google Scholar 

  31. Hallegatte, S., Vogt-Schilb, A., Bangalore, M. & Rozenberg, J. Unbreakable: Building the Resilience of the Poor in the Face of Natural Disasters (World Bank Group, 2016); https://openknowledge.worldbank.org/handle/10986/25335.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Otto or Katja Frieler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, C., Piontek, F., Kalkuhl, M. et al. Event-based models to understand the scale of the impact of extremes. Nat Energy 5, 111–114 (2020). https://doi.org/10.1038/s41560-020-0562-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-020-0562-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing