Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-mediated synthesis of drug-like bicyclopentanes

Abstract

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences1. Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements2. These structures are often generated from [1.1.1]propellane via opening of the internal C–C bond through the addition of either radicals or metal-based nucleophiles3,4,5,6,7,8,9,10,11,12,13. The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, α-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct three-component coupling of [1.1.1]propellane.
Fig. 2: Plausible mechanism and catalyst evaluation for three-component coupling.
Fig. 3: Radical precursor scope for three-component coupling.
Fig. 4: Nucleophile scope of three-component coupling.
Fig. 5: Rapid functionalization of drugs and natural products and preparation of pharmaceutical analogues.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Dömling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article  Google Scholar 

  2. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).

    Article  CAS  Google Scholar 

  3. Kanazawa, J. & Uchiyama, M. Recent advances in the synthetic chemistry of bicyclo[1.1.1]pentane. Synlett 30, 1–11 (2019).

    Article  CAS  Google Scholar 

  4. Kanazawa, J., Maeda, K. & Uchiyama, M. Radical multicomponent carboamination of [1.1.1]propellane. J. Am. Chem. Soc. 139, 17791–17794 (2017).

    Article  CAS  Google Scholar 

  5. Nugent, J. et al. A general route to bicyclo[1.1.1]pentanes through photoredox catalysis. ACS Catal. 9, 9568–9574 (2019).

    Article  CAS  Google Scholar 

  6. Kondo, M. et al. Silaboration of [1.1.1]propellane to provide a storable feedstock for bicyclo[1.1.1]pentane derivatives. Angew. Chem. Int. Ed. 59, 1970 (2020).

  7. Kaszynski, P. & Michl, J. A practical photochemical synthesis of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid. J. Org. Chem. 53, 4593–4594 (1988).

    Article  CAS  Google Scholar 

  8. Caputo, D. F. J. et al. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. Chem. Sci. 9, 5295–5300 (2018).

    Article  CAS  Google Scholar 

  9. Trongsiriwat, N. et al. Reactions of 2-aryl-1,3-dithianes and [1.1.1]propellane. Angew. Chem. Int. Ed. 58, 13416–13420 (2019).

    Article  CAS  Google Scholar 

  10. Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

    Article  ADS  CAS  Google Scholar 

  11. Makarov, I. S., Brocklehurst, C. E., Karaghiosoff, K., Koch, G. & Knochel, P. Synthesis of bicyclo[1.1.1]pentane bioisosteres of internal alkynes and para-disubstituted benzenes from [1.1.1]propellane. Angew. Chem. Int. Ed. 56, 12774–12777 (2017).

    Article  CAS  Google Scholar 

  12. Hughes, J. M. E., Scarlata, D. A., Chen, A. C.-Y., Burch, J. D. & Gleason, J. L. Aminoalkylation of [1.1.1]propellane enables direct access to high-value 3-alkylbicyclo[1.1.1]pentan-1-amines. Org. Lett. 21, 6800–6804 (2019).

    Article  CAS  Google Scholar 

  13. Wiberg, K. B. & Waddell, S. T. Reactions of [1.1.1]propellane. J. Am. Chem. Soc. 112, 2194–2216 (1990).

    Article  CAS  Google Scholar 

  14. Stepan, A. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012).

    Article  CAS  Google Scholar 

  15. Measom, N. D. et al. Investigation of a bicyclo[1.1.1]pentane as a phenyl replacement within an LpPLA2 inhibitor. ACS Med. Chem. Lett. 8, 43–48 (2017).

    Article  CAS  Google Scholar 

  16. Fischer, C. et al. Novel tricyclic compounds as inhibitors of mutant IDH enzymes. International patent WO/2016/089830 A1 (2016).

  17. Sidrauski, C. et al. Modulators of the integrated stress pathway. International patent WO/2017/193030 A1 (2017).

  18. Kaszynski, P., McMurdie, N. D. & Michl, J. Synthesis of doubly bridgehead substituted bicyclo[1.1.1]pentanes. Radical transformations of bridgehead halides and carboxylic acids. J. Org. Chem. 56, 307–316 (1991).

    Article  CAS  Google Scholar 

  19. Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W. & MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  20. Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).

    Article  CAS  Google Scholar 

  21. Primer, D. N. & Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc. 139, 9847–9850 (2017).

    Article  CAS  Google Scholar 

  22. Le, C., Chen, T. Q., Liang, T., Zhang, P. & MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    Article  ADS  CAS  Google Scholar 

  23. Mao, R., Frey, A., Balon, J. & Hu, X. Decarboxylative C(sp 3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal. 1, 120–126 (2018).

    Article  CAS  Google Scholar 

  24. Zhao, W., Wurz, R. P., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed decarboxylative C–N coupling to generate protected amines: an alternative to the Curtius rearrangement. J. Am. Chem. Soc. 139, 12153–12156 (2017).

    Article  CAS  Google Scholar 

  25. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp 3 C–N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Banks, J. T., Ingold, K. U., Della, E. W. & Walton, J. C. Bicyclo[1.1.1]pent-1-yl: a tertiary radical with enhanced reactivity. Tetrahedr. Lett. 37, 8059–8060 (1996).

    Article  CAS  Google Scholar 

  27. Dixon, I. M. et al. A family of luminescent coordination compounds: iridium(III) polyimine complexes. Chem. Soc. Rev. 29, 385–391 (2000).

    Article  CAS  Google Scholar 

  28. Nacsa, E. D. & MacMillan, D. W. C. Spin-center shift-enabled direct enantioselective α-benzylation of aldehydes with alcohols. J. Am. Chem. Soc. 140, 3322–3330 (2018).

    Article  CAS  Google Scholar 

  29. Minisci, F., Vismara, E., Fontana, F. & Barbosa, M. C. N. A new general method of homolytic alkylation of protonated heteroaromatic bases by carboxylic acids and iodosobenzene diacetate. Tetrahedr. Lett. 30, 4569–4572 (1989).

    Article  CAS  Google Scholar 

  30. DiMucci, I. M. et al. The myth of d 8 copper(III). J. Am. Chem. Soc. 141, 18508–18520 (2019).

    Article  CAS  Google Scholar 

  31. Walton, J. C. Bridgehead radicals. Chem. Soc. Rev. 21, 105–112 (1992).

    Article  CAS  Google Scholar 

  32. Fiorentino, M., Testaferri, L., Tiecco, M. & Troisi, L. Structural effects on the reactivity of carbon radicals in homolytic aromatic substitution. Part 4. The nucleophilicity of bridgehead radicals. J. Chem. Soc. Perkin Trans. 2 2, 87–93 (1977).

    Article  Google Scholar 

  33. Della, E. W., Cotsaris, E., Hine, P. T. & Pigou, P. E. 13C Spectral parameters of some polycyclic hydrocarbons. II. Bicyclo[3,1,1]heptane, tricyclo[3,1,1,03,6]heptane, tricyclo[3,3,0,02,6]octane and bicyclo[1,1,1]pentane. Aust. J. Chem. 34, 913–916 (1981).

    Article  CAS  Google Scholar 

  34. Silvi, M. & Aggarwal, V. K. Radical addition to strained σ-bonds enables the stereocontrolled synthesis of cyclobutyl boronic esters. J. Am. Chem. Soc. 141, 9511–9515 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the NIH National Institute of General Medical Sciences (1R35GM134897-01) and gifts from Merck, Bristol-Myers Squibb, Eli Lilly and Janssen Research and Development LLC. We acknowledge Y. Liang for discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., R.T.S., C.L. and S.J.M. performed and analysed the experiments. X.Z., R.T.S., C.L. and D.W.C.M. designed the experiments. S.J.M., B.T.S. and N.I.C. provided intellectual contributions. R.T.S., X.Z. and D.W.C.M. prepared the manuscript.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The file contains Figures S1-S18, encompassing optimization data, control experiments, additional examples, relevant cyclic voltammetry and UV-Vis data, experimental procedures, and characterization data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Smith, R.T., Le, C. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020). https://doi.org/10.1038/s41586-020-2060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2060-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing