Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program

Abstract

The Environmental Influences on Child Health Outcomes (ECHO) Program will evaluate environmental factors affecting children’s health (perinatal, neurodevelopmental, obesity, respiratory, and positive health outcomes) by pooling cohorts composed of >50,000 children in the largest US study of its kind. Our objective was to identify opportunities for studying chemicals and child health using existing or future ECHO chemical exposure data. We described chemical-related information collected by ECHO cohorts and reviewed ECHO-relevant literature on exposure routes, sources, and environmental and human monitoring. Fifty-six ECHO cohorts have existing or planned chemical biomonitoring data for mothers or children. Environmental phenols/parabens, phthalates, metals/metalloids, and tobacco biomarkers are each being measured by ≥15 cohorts, predominantly during pregnancy and childhood, indicating ample opportunities to study child health outcomes. Cohorts are collecting questionnaire data on multiple exposure sources and conducting environmental monitoring including air, dust, and water sample collection that could be used for exposure assessment studies. To supplement existing chemical data, we recommend biomonitoring of emerging chemicals, nontargeted analysis to identify novel chemicals, and expanded measurement of chemicals in alternative biological matrices and dust samples. ECHO’s rich data and samples represent an unprecedented opportunity to accelerate environmental chemical research to improve the health of US children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Existing or planned chemical assay data available for mothers or children by ECHO recruitment site.
Fig. 2: Number of 70 ECHO cohorts with chemical classes biomonitored in mothers or children. For mothers, we included any assay during preconception, prenatal, or delivery/infancy.

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists Committee on Health Care for Underserved Women, American Society for Reproductive Medicine Practice Committee, The University of California San Francisco Program on Reproductive Health and the Environment. Exposure to toxic environmental agents. Washington, D.C.: The American College of Obstetricians and Gynecologists; 2013. No. 575.

    Google Scholar 

  2. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30:293–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. President’s Cancer Panel. Reducing environmental cancer risk: what we can do now. Bethesda, MD: U.S. Department of Health and Human Services; 2010.

    Google Scholar 

  4. American Academy of Pediatrics. Pediatric environmental health. Itasca, IL: American Academy of Pediatrics Council on Environmental Health; 2018.

    Google Scholar 

  5. ACOG Committee Opinion No. 575. Exposure to toxic environmental agents. Obstet Gynecol. 2013;122:931–5.

    Google Scholar 

  6. National Research Council. Science and decisions: advancing risk assessment. Washington, D.C.: National Academies Press; 2009.

    Google Scholar 

  7. National Research Council. Phthalates and cumulative risk assessment: the task ahead. Washington, D.C.: National Academies Press; 2008.

    Google Scholar 

  8. OECD (Organisation for Economic Co-operation and Development). 40 years of chemical safety at OECD: quality and efficiency. Paris, France: OECD; 2011.

  9. EPA (US Environmental Protection Agency). 2016 chemical data reporting results. EPA; 2016. https://www.epa.gov/chemical-data-reporting/2016-chemical-data-reporting-results.

  10. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003- 2004. Environ Health Perspect. 2011;119:878–85.

    PubMed  PubMed Central  Google Scholar 

  11. CDC (U.S. Centers for Disease Control and Prevention). Fourth national report on human exposure to environmental chemicals-updated tables, January 2019. Atlanta, GA: U.S. Centers for Disease Control and Prevention; 2019.

    Google Scholar 

  12. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113:1056–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, et al. The navigation guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122:1040–51.

    PubMed  PubMed Central  Google Scholar 

  14. Lederman SA, Jones RL, Caldwell KL, Rauh V, Sheets SE, Tang D, et al. Relation between cord blood mercury levels and early child development in a World Trade Center cohort. Environ Health Perspect. 2008;116:1085–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010;118:712–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chevrier J, Eskenazi B, Holland N, Bradman A, Barr DB. Effects of exposure to polychlorinated biphenyls and organochlorine pesticides on thyroid function during pregnancy. Am J Epidemiol. 2008;168:298–310.

    PubMed  PubMed Central  Google Scholar 

  17. Zota AR, Rudel RA, Morello-Frosch RA, Brody JG. Elevated house dust and serum concentrations of PBDEs in California: unintended consequences of furniture flammability standards? Environ Sci Technol. 2008;42:8158–64.

    CAS  PubMed  Google Scholar 

  18. Nelson JW, Scammell MK, Hatch EE, Webster TF. Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: a cross-sectional study within NHANES 2003–2006. Environ Health. 2012;11:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999–2000. Environ Health Perspect. 2007;115:1596–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116:39–44.

    CAS  PubMed  Google Scholar 

  21. Sjodin A, Wong LY, Jones RS, Park A, Zhang Y, Hodge C, et al. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polyhrominated biphenyl (PBB) in the United States population: 2003–2004. Environ Sci Technol. 2008;42:1377–84.

    PubMed  Google Scholar 

  22. EPA (US Environmental Protection Agency). Child-specific exposure factors handbook. Washington, DC: National Center for Environmental Assessment; 2002.

    Google Scholar 

  23. National Institutes of Health (NIH). Environmental influences on child health outcomes (ECHO)-wide cohort data collection protocol, version 1.2. National Institutes of Health; 2018. https://echochildren.org/wp-content/uploads/2019/06/ECHO-Wide-Cohort-Data-Collection-Protocol-Approved-v01.201.pdf.

  24. Wright RO, Teitelbaum S, Thompson C, Balshaw D, Network C. The child health exposure analysis resource as a vehicle to measure environment in the environmental influences on child health outcomes program. Curr Opin Pediatr. 2018;30:285–91.

    PubMed  PubMed Central  Google Scholar 

  25. Pellizzari ED, Woodruff TJ, Boyles RR, Kannan K, Beamer PI, Buckley JP, et al. Identifying and prioritizing chemicals with uncertain burden of exposure: opportunities for biomonitoring and health-related research. Environ Health Perspect. 2019;127:126001.

  26. Adgate JL, Church TR, Ryan AD, Ramachandran G, Fredrickson AL, Stock TH, et al. Outdoor, indoor, and personal exposure to VOCs in children. Environ Health Perspect. 2004;112:1386–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi H, Perera F, Pac A, Wang L, Flak E, Mroz E, et al. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring. Environ Health Perspect. 2008;116:1509–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chuang JC, Callahan PJ, Lyu CW, Wilson NK. Polycyclic aromatic hydrocarbon exposures of children in low-income families. J Expo Anal Environ Epidemiol. 1999;9:85–98.

    CAS  PubMed  Google Scholar 

  29. Andrew Clayton C, Pellizzari ED, Whitmore RW, Quackenboss JJ, Adgate J, Sefton K. Distributions, associations, and partial aggregate exposure of pesticides and polynuclear aromatic hydrocarbons in the Minnesota Children’s Pesticide Exposure Study (MNCPES). J Expo Anal Environ Epidemiol. 2003;13:100–11.

    CAS  PubMed  Google Scholar 

  30. Delfino RJ, Staimer N, Tjoa T. Personal endotoxin exposure in a panel study of school children with asthma. Environ Health. 2011;10:69.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Delfino RJ, Staimer N, Tjoa T, Gillen D, Kleinman MT, Sioutas C, et al. Personal and ambient air pollution exposures and lung function decrements in children with asthma. Environ Health Perspect. 2008;116:550–8.

    PubMed  Google Scholar 

  32. Geyh AS, Xue J, Ozkaynak H, Spengler JD. The Harvard Southern California Chronic Ozone Exposure Study: assessing ozone exposure of grade-school-age children in two Southern California communities. Environ Health Perspect. 2000;108:265–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gordon SM, Callahan PJ, Nishioka MG, Brinkman MC, O’Rourke MK, Lebowitz MD, et al. Residential environmental measurements in the national human exposure assessment survey (NHEXAS) pilot study in Arizona: preliminary results for pesticides and VOCs. J Expo Anal Environ Epidemiol. 1999;9:456–70.

    CAS  PubMed  Google Scholar 

  34. Hoh E, Hites RA. Brominated flame retardants in the atmosphere of the East-Central United States. Environ Sci Technol. 2005;39:7794–802.

    CAS  PubMed  Google Scholar 

  35. Kim JH, Stevens RC, MacCoss MJ, Goodlett DR, Scherl A, Richter RJ, et al. Identification and characterization of biomarkers of organophosphorus exposures in humans. In: Reddy S, editors. Paraoxonases in inflammation, infection, and toxicology. New York: Humana Press; 2010. p. 61–71.

    Google Scholar 

  36. Kinney PL, Chillrud SN, Ramstrom S, Ross J, Spengler JD. Exposures to multiple air toxics in New York City. Environ Health Perspect. 2002;110 Suppl 4:539–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. La Guardia MJ, Schreder ED, Uding N, Hale RC. Human indoor exposure to airborne halogenated flame retardants: influence of airborne particle size. Int J Environ Res Public Health. 2017;14:507.

    PubMed Central  Google Scholar 

  38. Lee T, Grinshpun SA, Martuzevicius D, Adhikari A, Crawford CM, Reponen T. Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmos Environ. 1994;2006:2902–10.

    Google Scholar 

  39. Lioy PJ, Fan Z, Zhang J, Georgopoulos P, Wang SW, Ohman-Strickland P. et al. Personal and ambient exposures to air toxics in Camden, New Jersey. Boston, MA: Health Effects Research Institute; 2011. Report no.: 1041–5505.

  40. O’Rourke MK, Van de Water PK, Jin S, Rogan SP, Weiss AD, Gordon SM, et al. Evaluations of primary metals from NHEXAS Arizona: distributions and preliminary exposures. National Human Exposure Assessment Survey. J Expo Anal Environ Epidemiol. 1999;9:435–45.

    PubMed  Google Scholar 

  41. Payne-Sturges DC, Burke TA, Breysse P, Diener-West M, Buckley TJ. Personal exposure meets risk assessment: a comparison of measured and modeled exposures and risks in an urban community. Environ Health Perspect. 2004;112:589–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ryan PH, Brokamp C, Fan ZH, Rao MB. Analysis of personal and home characteristics associated with the elemental composition of PM2.5 in indoor, outdoor, and personal air in the RIOPA Study. Res Rep Health Eff Inst. 2015;185:3–40.

  43. Sheldon L, Clayton A, Keever J, Perritt R, Whitaker D. PTEAM: monitoring of phthalates and PAHs in indoor and outdoor air samples in Riverside, California. Durham, NC: Research Triangle Institute; 1992. Report no.: No. PB-93-205649/XA.

  44. Shendell DG, Winer AM, Stock TH, Zhang L, Zhang JJ, Maberti S, et al. Air concentrations of VOCs in portable and traditional classrooms: results of a pilot study in Los Angeles county. J Expo Anal Environ Epidemiol. 2004;14:44–59.

    CAS  PubMed  Google Scholar 

  45. Suh H, Koutrakis P, Chang L-T. Characterization of the composition of personal, indoor, and outdoor particulate exposures. Sacramento, CA: California Air Resources Board; 2003. https://ww3.arb.ca.gov/research/apr/past/98-330.pdf.

    Google Scholar 

  46. Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ Res. 2007;103:9–20.

    CAS  PubMed  Google Scholar 

  47. Venier M, Audy O, Vojta Š, Bečanová J, Romanak K, Melymuk L, et al. Brominated flame retardants in the indoor environment—Comparative study of indoor contamination from three countries. Environ Int. 2016;94:150–60.

    CAS  PubMed  Google Scholar 

  48. Wilson NK, Chuang JC, Lyu C. Levels of persistent organic pollutants in several child day care centers. J Expo Anal Environ Epidemiol. 2001;11:449–58.

    CAS  PubMed  Google Scholar 

  49. Batterman S, Su F-C, Li S, Mukherjee B, Jia C. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data. Res Rep Health Eff Inst. 2014;181:3.

  50. Pellizzari ED, Clayton CA, Rodes CE, Mason RE, Piper LL, Fort B, et al. Particulate matter and manganese exposures in Indianapolis, Indiana. J Expo Anal Environ Epidemiol. 2001;11:423–40.

    CAS  PubMed  Google Scholar 

  51. Tonne CC, Whyatt RM, Camann DE, Perera FP, Kinney PL. Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City. Environ Health Perspect. 2004;112:754–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weisel CP. Assessing exposure to air toxics relative to asthma. Environ Health Perspect. 2002;110 Suppl 4:527–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Whyatt RM, Barr DB, Camann DE, Kinney PL, Barr JR, Andrews HF, et al. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect. 2003;111:749–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams MK, Rundle A, Holmes D, Reyes M, Hoepner LA, Barr DB, et al. Changes in pest infestation levels, self-reported pesticide use, and permethrin exposure during pregnancy after the 2000–2001 US Environmental Protection Agency restriction of organophosphates. Environ Health Perspect. 2008;116:1681–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Imm P, Knobeloch L, Buelow C, Anderson HA. Household exposures to polybrominated diphenyl ethers (PBDEs) in a Wisconsin Cohort. Environ Health Perspect. 2009;117:1890–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanazawa A, Saito I, Araki A, Takeda M, Ma M, Saijo Y, et al. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air. 2010;20:72–84.

    CAS  PubMed  Google Scholar 

  57. Kim JL, Elfman L, Mi Y, Wieslander G, Smedje G, Norback D. Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools–associations with asthma and respiratory symptoms in pupils. Indoor Air. 2007;17:153–63.

    CAS  PubMed  Google Scholar 

  58. Mandin C, Mercier F, Rarnalho O, Lucas JP, Gilles E, Blanchard O, et al. Semi-volatile organic compounds in the particulate phase in dwellings: a nationwide survey in France. Atmos Environ. 2016;136:82–94.

    CAS  Google Scholar 

  59. Otake T, Yoshinaga J, Yanagisawa Y. Exposure to phthalate esters from indoor environment. J Expo Anal Environ Epidemiol. 2004;14:524–8.

    CAS  PubMed  Google Scholar 

  60. Pang Y, MacIntosh DL, Camann DE, Ryan PB. Analysis of aggregate exposure to chlorpyrifos in the NHEXAS-Maryland investigation. Environ Health Perspect. 2002;110:235–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003;37:4543–53.

    CAS  PubMed  Google Scholar 

  62. Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, et al. Alternate and new brominated flame retardants detected in U.S. house dust. Environ Sci Technol. 2008;42:6910–6.

    CAS  PubMed  Google Scholar 

  63. Zota AR, Schaider LA, Ettinger AS, Wright RO, Shine JP, Spengler JD. Metal sources and exposures in the homes of young children living near a mining-impacted Superfund site. J Expo Sci Environ Epidemiol. 2011;21:495–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xue J, Wan Y, Kannan K. Occurrence of bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Chemosphere. 2016;151:1–8.

    CAS  PubMed  Google Scholar 

  65. Li H, Lydy MJ, You J. Pyrethroids in indoor air during application of various mosquito repellents: occurrence, dissipation and potential exposure risk. Chemosphere. 2016;144:2427–35.

    CAS  PubMed  Google Scholar 

  66. Abb M, Stahl B, Lorenz W. Analysis of brominated flame retardants in house dust. Chemosphere. 2011;85:1657–63.

    CAS  PubMed  Google Scholar 

  67. Abou-Elwafa Abdallah M, Pawar G, Harrad S. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure. Toxicol Appl Pharm. 2016;291:28–37.

    CAS  Google Scholar 

  68. Abdallah MA, Harrad S. Personal exposure to HBCDs and its degradation products via ingestion of indoor dust. Environ Int. 2009;35:870–6.

    CAS  PubMed  Google Scholar 

  69. Abraham JH, Gold DR, Dockery DW, Ryan L, Park JH, Milton DK. Within-home versus between-home variability of house dust endotoxin in a birth cohort. Environ Health Perspect. 2005;113:1516–21.

    PubMed  PubMed Central  Google Scholar 

  70. Bjorklund JA, Sellstrom U, de Wit CA, Aune M, Lignell S, Darnerud PO. Comparisons of polybrominated diphenyl ether and hexabromocyclododecane concentrations in dust collected with two sampling methods and matched breast milk samples. Indoor Air. 2012;22:279–88.

    CAS  PubMed  Google Scholar 

  71. Boros K, Fortin D, Jayawardene I, Chenier M, Levesque C, Rasmussen PE. Comparison of gastric versus gastrointestinal PBET extractions for estimating oral bioaccessibility of metals in house dust. Int J Environ Res Public Health. 2017;14:92.

    PubMed Central  Google Scholar 

  72. Castorina R, Butt C, Stapleton HM, Avery D, Harley KG, Holland N, et al. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort). Chemosphere. 2017;179:159–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cowell WJ, Stapleton HM, Holmes D, Calero L, Tobon C, Perzanowski M, et al. Prevalence of historical and replacement brominated flame retardant chemicals in New York City homes. Emerg Contam. 2017;3:32–39.

    PubMed  PubMed Central  Google Scholar 

  74. Deutschle T, Reiter R, Butte W, Heinzow B, Keck T, Riechelmann H. A controlled challenge study on di(2-ethylhexyl) phthalate (DEHP) in house dust and the immune response in human nasal mucosa of allergic subjects. Environ Health Perspect. 2008;116:1487–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Deziel NC, Colt JS, Kent EE, Gunier RB, Reynolds P, Booth B, et al. Associations between self-reported pest treatments and pesticide concentrations in carpet dust. Environ Health. 2015;14:27.

    PubMed  PubMed Central  Google Scholar 

  76. Dodge LE, Williams PL, Williams MA, Missmer SA, Toth TL, Calafat AM, et al. Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic. Environ Health Perspect. 2015;123:665–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fang M, Webster TF, Gooden D, Cooper EM, McClean MD, Carignan C, et al. Investigating a novel flame retardant known as V6: measurements in baby products, house dust, and car dust. Environ Sci Technol. 2013;47:4449–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Horick N, Weller E, Milton DK, Gold DR, Li RF, Spiegelman D. Home endotoxin exposure and wheeze in infants: correction for bias due to exposure measurement error. Environ Health Perspect. 2006;114:135–40.

    PubMed  Google Scholar 

  79. Johnson PI, Stapleton HM, Mukherjee B, Hauser R, Meeker JD. Associations between brominated flame retardants in house dust and hormone levels in men. Sci Total Environ. 2013;445:177–84.

    PubMed  Google Scholar 

  80. Johnson-Restrepo B, Kannan K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere. 2009;76:542–8.

    CAS  PubMed  Google Scholar 

  81. Kubwabo C, Stewart B, Zhu J, Marro L. Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. J Environ Monit. 2005;7:1074–8.

    CAS  PubMed  Google Scholar 

  82. Lioy PJ, Freeman NCG, Millette JR. Dust: a metric for use in residential and building exposure assessment and source characterization. Environ Health Perspect. 2002;110:969–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Meeker JD, Johnson PI, Camann D, Hauser R. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci Total Environ. 2009;407:3425–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Park JH, Spiegelman DL, Burge HA, Gold DR, Chew GL, Milton DK. Longitudinal study of dust and airborne endotoxin in the home. Environ Health Perspect. 2000;108:1023–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Robertson GL, Lebowitz M, O’Rourke M, Gordon S, Moschandreas D. The National Human Exposure Assessment Survey (NHEXAS) study in Arizona—introduction and preliminary results. J Expo Anal Environ Epidemiol. 1999;9:427–34.

    CAS  PubMed  Google Scholar 

  86. Sahlstrom LM, Sellstrom U, de Wit CA, Lignell S, Darnerud PO. Estimated intakes of brominated flame retardants via diet and dust compared to internal concentrations in a Swedish mother-toddler cohort. Int J Hyg Environ Health. 2015;218:422–32.

    PubMed  Google Scholar 

  87. Sordillo JE, Alwis UK, Hoffman E, Gold DR, Milton DK. Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust. Environ Health Perspect. 2011;119:189–95.

    CAS  PubMed  Google Scholar 

  88. Ward MH, Colt JS, Deziel NC, Whitehead TP, Reynolds P, Gunier RB, et al. Residential levels of polybrominated diphenyl ethers and risk of childhood acute lymphoblastic leukemia in California. Environ Health Perspect. 2014;122:1110–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu N, Herrmann T, Paepke O, Tickner J, Hale R, Harvey LE, et al. Human exposure to PBDEs: associations of PBDE body burdens with food consumption and house dust concentrations. Environ Sci Technol. 2007;41:1584–9.

    CAS  PubMed  Google Scholar 

  90. Dodson RE, Van den Eede N, Covaci A, Perovich LJ, Brody JG, Rudel RA. Urinary biomonitoring of phosphate flame retardants: levels in California adults and recommendations for future studies. Environ Sci Technol. 2014;48:13625–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kubwabo C, Kosarac I, Lalonde K. Determination of selected perfluorinated compounds and polyfluoroalkyl phosphate surfactants in human milk. Chemosphere. 2013;91:771–7.

    CAS  PubMed  Google Scholar 

  92. Camann D, Colt J, Teitelbaum S, Rudel R, Hart R, Gammon M, editors. Pesticide and PAH distributions in house dust from seven areas of USA. Nashville, TN: Society of Environmental Toxicology and Chemistry; 2000. Paper 570.

    Google Scholar 

  93. Larsson K, Berglund M. Children’s exposure to chemicals in indoor environments-a literature survey of chemicals in dust. Swedish Environmental Protection Agency, 2018. http://www.diva-portal.org/smash/get/diva2:1220692/FULLTEXT01.pdf.

  94. Karásková P, Venier M, Melymuk L, Bečanová J, Vojta Š, Prokeš R, et al. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environ Int. 2016;94:315–24.

    PubMed  Google Scholar 

  95. Subedi B, Sullivan KD, Dhungana B. Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Environ Pollut. 2017;230:701–8.

    CAS  PubMed  Google Scholar 

  96. Kumarathilaka P, Oze C, Indraratne S, Vithanage M. Perchlorate as an emerging contaminant in soil, water and food. Chemosphere. 2016;150:667–77.

    CAS  PubMed  Google Scholar 

  97. Benotti M, Fisher S, Terracciano S. Occurrence of pharmaceuticals in shallow ground water of Suffolk County, New York, 2002-2005. U.S. geological survey open-file report 2006–1297; 2006. https://pubs.usgs.gov/of/2006/1297/OFR2006-1297.pdf.

  98. Blomquist JD, Denis JM, Cowles J, Hetrick JA, Jones RD, Birchfield NB. Pesticides in selected water-supply reservoirs and finished drinking water, 1999–2000: summary of results from a pilot monitoring program. US geological survey open-file report 2001-456: Washington, DC; 2001. https://pubs.er.usgs.gov/publication/ofr01456.

  99. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3:344–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Moran MJ, Lapham WW, Rowe BL, Zogorski JS. Volatile organic compounds in ground water from rural private wells, 1986 to 1999. J Am Water Resour Assoc. 2004;40:1141–57.

    CAS  Google Scholar 

  101. Rowe BL, Toccalino PL, Moran MJ, Zogorski JS, Price CV. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States. Environ Health Perspect. 2007;115:1539–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. EPA (US Environmental Protection Agency). Compliance monitoring data. Washington, DC: Environmental Protection Agency; 1993–2006. https://www.epa.gov/dwsixyearreview/six-year-review-3-compliance-monitoring-data-2006-2011.

  103. USDA (U.S. Department of Agriculture). Pesticide data program 2010-2015. Washington, DC: U.S. Department of Agriculture National Organic Program; 2012. https://www.ams.usda.gov/datasets/pdp.

    Google Scholar 

  104. USDA (U.S. Department of Agriculture). Pesticide data program: databases and annual summary reports, 2010-2016. Washington, DC: US Department of Agriculture; 2017. https://www.ams.usda.gov/datasets/pdp/pdpdata.

    Google Scholar 

  105. Guo J, Romanak K, Westenbroek S, Hites RA, Venier M. Current-use flame retardants in the water of Lake Michigan tributaries. Environ Sci Technol. 2017;51:9960–9.

    CAS  PubMed  Google Scholar 

  106. EPA (US Environmental Protection Agency). Six-year review 1, 2 and 3 compliance monitoring data. Washington, DC: US Environmental Protection Agency, Office of Water, 2016. https://www.epa.gov/dwsixyearreview/six-year-review-3-compliance-monitoring-data-2006-2011.

  107. FDA (US Food and Drug Administration). Total diet study market baskets 2004-1 through 2005-4. College Park, MD: U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition. https://www.fda.gov/downloads/Food/FoodScienceResearch/TotalDietStudy/UCM291685.pdf.

  108. Roszko M, Szterk A, Szymczyk K, Waszkiewicz-Robak B. PAHs, PCBs, PBDEs and pesticides in cold-pressed vegetable oils. J Am Oil Chem. 2012;89:389–400.

    CAS  Google Scholar 

  109. Schecter A, Colacino J, Haffner D, Patel K, Opel M, Päpke O, et al. Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ Health Perspect. 2010;118:796–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schecter A, Haffner D, Colacino J, Patel K, Päpke O, Opel M, et al. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclodecane (HBCD) in composite US food samples. Environ Health Perspect. 2010;118:357–62.

    CAS  PubMed  Google Scholar 

  111. Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect. 2013;121:473–94.

    PubMed  PubMed Central  Google Scholar 

  112. Schecter A, Päpke O, Harris TR, Tung K, Musumba A, Olson J, et al. Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of US food and estimated PBDE dietary intake by age and sex. Environ Health Perspect. 2006;114:1515–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schecter A, Szabo DT, Miller J, Gent TL, Malik-Bass N, Petersen M, et al. Hexabromocyclododecane (HBCD) stereoisomers in U.S. food from Dallas, Texas. Environ Health Perspect. 2012;120:1260–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. FDA (US Food and Drug Administration). Total diet study. U.S. Food and Drug Administration: Washington, DC. https://www.fda.gov/Food/FoodScienceResearch/TotalDietStudy/ucm184293.htm.

  115. CDC (U.S. Centers for Disease Control and Prevention). Biomonitoring Summaries. Atlanta, GA: CDC; 2017.

  116. Ferguson KK, Colacino JA, Lewis RC, Meeker JD. Personal care product use among adults in NHANES: associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen. J Expo Sci Environ Epidemiol. 2017;27:326–32.

    CAS  PubMed  Google Scholar 

  117. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24:139–77.

    CAS  PubMed  Google Scholar 

  118. Calafat AM. Contemporary issues in exposure assessment using biomonitoring. Curr Epidemiol Rep. 2016;3:145–53.

    PubMed  PubMed Central  Google Scholar 

  119. Guidry VT, Longnecker MP, Aase H, Eggesbo M, Zeiner P, Reichborn-Kjennerud T, et al. Measurement of total and free urinary phenol and paraben concentrations over the course of pregnancy: assessing reliability and contamination of specimens in the Norwegian Mother and Child Cohort Study. Environ Health Perspect. 2015;123:705–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rodriguez-Gomez R, Martin J, Zafra-Gomez A, Alonso E, Vilchez JL, Navalon A. Biomonitoring of 21 endocrine disrupting chemicals in human hair samples using ultra-high performance liquid chromatography-tandem mass spectrometry. Chemosphere. 2017;168:676–84.

    CAS  PubMed  Google Scholar 

  121. FDA (US Food and Drug Administration). Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Final rule. Fed Regist. 2016;81:61106–30.

    Google Scholar 

  122. Ye X, Wong LY, Kramer J, Zhou X, Jia T, Calafat AM. Urinary concentrations of Bisphenol A and three other bisphenols in convenience samples of U.S. adults during 2000-2014. Environ Sci Technol. 2015;49:11834–9.

    CAS  PubMed  Google Scholar 

  123. Giovanoulis G, Bui T, Xu F, Papadopoulou E, Padilla-Sanchez JA, Covaci A, et al. Multi-pathway human exposure assessment of phthalate esters and DINCH. Environ Int. 2018;112:115–26.

    CAS  PubMed  Google Scholar 

  124. Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Consumer Product Safety Commission. Rule 82 FR 49938. Prohibition of children’s toys and child care articles containing specified phthalates. Bethesda, MD: Consumer Product Safety Commission; 2017.

  126. Consumer Product Safety Commission. Public law 110 - 314 - Consumer Product Safety Improvement Act of 2008. Bethesda, MD: Consumer Product Safety Commission; 2008.

  127. Renner R. Growing concern over perfluorinated chemicals. Environ Sci Technol. 2001;35:154A–60A.

    CAS  PubMed  Google Scholar 

  128. OECD (Organisation for Economic Co-operation and Development). Potential designated chemicals: perfluoroalkyl and polyfluoroalkyl substances (PFASs). OECD; 2015. https://biomonitoring.ca.gov/sites/default/files/downloads/PotenDesigPFASs_031315.pdf.

  129. Winkens K, Vestergren R, Berger U, Cousins IT. Early life exposure to per- and polyfluoroalkyl substances (PFASs): a critical review. Emerg Contam. 2017;3:55–68.

    Google Scholar 

  130. 3M Company. Phase-out plan for POSF-based products. Letter from William Weppner (3M Company) to Charles Auer (U.S. EPA). 7 July 2000. U.S. EPA docket AR-226-0600: Washington, DC; 2000. http://www.fluoridealert.org/wp-content/pesticides/pfos.fr.final.docket.0009.pdf.

  131. EPA (US Environmental Protection Agency). Fact sheet: 2010/2015 PFOA Stewardship Program. Washington, DC: EPA; 2018.

  132. Ritter S. Fluorochemicals go short. Chem Eng N. 2010;88:12–17.

    Google Scholar 

  133. CDC (U.S. Centers for Disease Control and Prevention). An overview of perfluoroalkyl and polyfluoroalkyl substances and interim guidance for clinicians responding to patient exposure concerns. Atlanta, GA: CDC; 2017.

  134. Alves A, Jacobs G, Vanermen G, Covaci A, Voorspoels S. New approach for assessing human perfluoroalkyl exposure via hair. Talanta. 2015;144:574–83.

    CAS  PubMed  Google Scholar 

  135. Wang Y, Zhong Y, Li J, Zhang J, Lyu B, Zhao Y, et al. Occurrence of perfluoroalkyl substances in matched human serum, urine, hair and nail. J Environ Sci. 2018;67:191–7.

    Google Scholar 

  136. Ritscher A, Wang Z, Scheringer M, Boucher JM, Ahrens L, Berger U, et al. Zurich statement on future actions on per- and polyfluoroalkyl substances (PFASs). Environ Health Perspect. 2018;126:84502.

    CAS  PubMed  Google Scholar 

  137. EPA (US Environmental Protection Agency). Development of a relative potency factor (Rpf) approach for polycyclic aromatic hydrocrabon (PAH) mixtures (external review draft). Washington, DC: EPA; 2010.

  138. Costa LG. Organophosphorus compounds at 80: some old and new issues. Toxicol Sci. 2018;162:24–35.

    CAS  PubMed  Google Scholar 

  139. Hertz-Picciotto I, Sass JB, Engel S, Bennett DH, Bradman A, Eskenazi B, et al. Organophosphate exposures during pregnancy and child neurodevelopment: recommendations for essential policy reforms. PLoS Med. 2018;15:e1002671.

    PubMed  PubMed Central  Google Scholar 

  140. Needham LL. Assessing exposure to organophosphorus pesticides by biomonitoring in epidemiologic studies of birth outcomes. Environ Health Perspect. 2005;113:494–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Beamer PI, Canales RA, Ferguson AC, Leckie JO, Bradman A. Relative pesticide and exposure route contribution to aggregate and cumulative dose in young farmworker children. Int J Environ Res Public Health. 2012;9:73–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Silva MJ, Wong LY, Samandar E, Preau JL Jr., Jia LT, Calafat AM. Exposure to di-2-ethylhexyl terephthalate in the U.S. general population from the 2015-2016 National Health and Nutrition Examination Survey. Environ Int. 2019;123:141–7.

    CAS  PubMed  Google Scholar 

  143. Silva MJ, Jia T, Samandar E, Preau JL Jr., Calafat AM. Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in U.S. adults (2000-2012). Environ Res. 2013;126:159–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. BASF. BASF doubles production capacity of Hexamoll DINCH to 200,000 metric tons. BASF; 2014. https://www.basf.com/en/company/news-and-media/news-releases/2014/05/p-14-231.html.

  145. Silva MJ, Wong LY, Samandar E, Preau JL, Calafat AM, Ye X. Exposure to di-2-ethylhexyl terephthalate in a convenience sample of U.S. adults from 2000 to 2016. Arch Toxicol. 2017;91:3287–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Covaci A, Harrad S, Abdallah MA, Ali N, Law RJ, Herzke D, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int. 2011;37:532–56.

    CAS  PubMed  Google Scholar 

  147. van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88:1119–53.

    PubMed  Google Scholar 

  148. Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol. 2009;43:7490–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. de Boer J, Ballesteros-Gómez A, Leslie HA, Brandsma SH, Leonards PEG. Flame retardants: dust - and not food - might be the risk. Chemosphere. 2016;150:461–4.

    PubMed  Google Scholar 

  150. Hoffman K, Garantziotis S, Birnbaum LS, Stapleton HM. Monitoring indoor exposure to organophosphate flame retardants: hand wipes and house dust. Environ Health Perspect. 2015;123:160–5.

    CAS  PubMed  Google Scholar 

  151. Hoffman K, Butt CM, Chen A, Limkakeng AT, Stapleton HM. High exposure to organophosphate flame retardants in infants: associations with baby products. Environ Sci Technol. 2015;49:14554–9.

    CAS  PubMed  Google Scholar 

  152. Wei GL, Li DQ, Zhuo MN, Liao YS, Xie ZY, Guo TL, et al. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut. 2015;196:29–46.

    CAS  PubMed  Google Scholar 

  153. Schreder ED, Uding N, La Guardia MJ. Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere. 2016;150:499–504.

    CAS  PubMed  Google Scholar 

  154. Liu X, Yu G, Cao Z, Wang B, Huang J, Deng S, et al. Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption. Environ Int. 2017;98:113–9.

    CAS  PubMed  Google Scholar 

  155. Xu F, Tay JH, Covaci A, Padilla-Sánchez JA, Papadopoulou E, Haug LS, et al. Assessment of dietary exposure to organohalogen contaminants, legacy and emerging flame retardants in a Norwegian cohort. Environ Int. 2017;102:236–43.

    CAS  PubMed  Google Scholar 

  156. Shi Z, Zhang L, Li J, Zhao Y, Sun Z, Zhou X, et al. Novel brominated flame retardants in food composites and human milk from the Chinese Total Diet Study in 2011: Concentrations and a dietary exposure assessment. Environ Int. 2016;96:82–90.

    CAS  PubMed  Google Scholar 

  157. Zhang X, Zou W, Mu L, Chen Y, Ren C, Hu X, et al. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. J Hazard Mater. 2016;318:686–93.

    CAS  PubMed  Google Scholar 

  158. Butt C, Congleton J, Hoffman K, Fang M, Stapleton HM. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate (EH-TBB) in urine from paired mothers and toddlers. Environ Sci Technol. 2014. https://doi.org/10.1021/es5025299.

  159. Hoffman K, Daniels JL, Stapleton HM. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women. Environ Int. 2014;63:169–72.

    CAS  PubMed  Google Scholar 

  160. Hoffman K, Fang M, Horman B, Patisaul HB, Garantziotis S, Birnbaum LS, et al. Urinary tetrabromobenzoic acid (TBBA) as a biomarker of exposure to the flame retardant mixture Firemaster® 550. Environ Health Perspect. 2014;122:963–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Meeker JD, Cooper EM, Stapleton HM, Hauser R. Exploratory analysis of urinary metabolites of phosphorus-containing flame retardants in relation to markers of male reproductive health. Endocr Disruptors (Austin). 2013;1:e26306.

    Google Scholar 

  162. Crump D, Chiu S, Kennedy SW. Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol Sci. 2012;126:140–8.

    CAS  PubMed  Google Scholar 

  163. Hoffman K, Butt CM, Webster TF, Preston EV, Hammel SC, Makey C, et al. Temporal trends in exposure to organophosphate flame retardants in the United States. Environ Sci Technol Lett. 2017;4:112–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Urbansky E. Perchlorate chemistry: implications for analysis and remediation. Bioremediation J. 1998;2:81–95.

    CAS  Google Scholar 

  165. El Aribi H, Le Blanc YJ, Antonsen S, Sakuma T. Analysis of perchlorate in foods and beverages by ion chromatography coupled with tandem mass spectrometry (IC-ESI-MS/MS). Anal Chim Acta. 2006;567:39–47.

    CAS  PubMed  Google Scholar 

  166. Dyke JV, Ito K, Obitsu T, Hisamatsu Y, Dasgupta PK, Blount BC. Perchlorate in dairy milk. Comparison of Japan versus the United States. Environ Sci Technol. 2007;41:88–92.

    CAS  PubMed  Google Scholar 

  167. Kirk AB, Dyke JV, Martin CF, Dasgupta PK. Temporal patterns in perchlorate, thiocyanate, and iodide excretion in human milk. Environ Health Perspect. 2007;115:182–6.

    CAS  PubMed  Google Scholar 

  168. Guruge KS, Wu Q, Kannan K. Occurrence and exposure assessment of perchlorate, iodide and nitrate ions from dairy milk and water in Japan and Sri Lanka. J Environ Monit. 2011;13:2312–20.

    CAS  PubMed  Google Scholar 

  169. ATSDR (Agency for Toxic Substances and Disease Registry). Nitrates/nitrites poisoning: patient education care instruction sheet. ATSDR; 2013. http://www.atsdr.cdc.gov/csem/nitrate_2013/docs/nitrate_patient-education.pdf.

  170. Zil -a- Rubab, Rahman MA. Serum thiocyanate levels in smokers, passive smokers and never smokers. J Pak Med Assoc. 2006;56:323–6.

    CAS  PubMed  Google Scholar 

  171. Crump KS, Gibbs JP. Benchmark calculations for perchlorate from three human cohorts. Environ Health Perspect. 2005;113:1001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Oldi JF, Kannan K. Analysis of perchlorate in human saliva by liquid chromatography-tandem mass spectrometry. Environ Sci Technol. 2009;43:142–7.

    CAS  PubMed  Google Scholar 

  173. Oldi JF, Kannan K. Perchlorate in human blood serum and plasma: relationship to concentrations in saliva. Chemosphere. 2009;77:43–47.

    CAS  PubMed  Google Scholar 

  174. Kirk AB, Martinelango PK, Tian K, Dutta A, Smith EE, Dasgupta PK. Perchlorate and iodide in dairy and breast milk. Environ Sci Technol. 2005;39:2011–7.

    CAS  PubMed  Google Scholar 

  175. EPA (US Environmental Protection Agency). Pyrethrins and pyrethroids. EPA; 2017. https://www.epa.gov/ingredients-used-pesticide-products/pyrethrins-and-pyrethroids.

  176. EPA (US Environmental Protection Agency). Revaluation: pyrethrins and pyrethroids. Pesticides: regulating pesticides. EPA; 2010. http://www.epa.gov/oppsrrd1/reevaluation/pyrethroids-pyrethrins.html.

  177. Trunnelle KJ, Bennett DH, Tulve N, Clifton MS, Davis M, Calafat A, et al. Urinary pyrethroid and chlorpyrifos metabolite concentrations in northern California families and their relationship to indoor residential insecticide levels, part of SUPERB. Environ Sci Technol. 2014;48:1931–9.

    CAS  PubMed  Google Scholar 

  178. Parsons PJ. Atomic spectrometry in clinical chemistry. In: Evenson MA, editors. Encyclopedia of analytical chemistry, applications, theory and instrumentation. Vol. 2. Chichester, UK: John Wiley & Sons, Inc.; 2000. p. 1091–123.

    Google Scholar 

  179. Parsons PJ, Barbosa F Jr. Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim Acta Part B Spectrosc. 2007;62:992–1003.

    Google Scholar 

  180. Verdon CP, Caldwell KL, Fresquez MR, Jones RL. Determination of seven arsenic compounds in urine by HPLC-ICP-DRC-MS: a CDC population biomonitoring method. Anal Bioanal Chem. 2009;393:939–47.

    CAS  PubMed  Google Scholar 

  181. Davis WC, Vander Pol SS, Schantz MM, Long SE, Day RD, Christopher SJ. An accurate and sensitive method for the determination of methylmercury in biological specimens using GC-ICP-MS with solid phase microextraction. J Anal Spectrom. 2004;19:1546–51.

    CAS  Google Scholar 

  182. McShane WJ, Steven Pappas R, Paschal D. Analysis of total arsenic, total selenium and total chromium in urine by inductively coupled plasma-dynamic reaction cell-mass spectrometry. J Anal Spectrom. 2007;22:630–5.

    CAS  Google Scholar 

  183. Jarrett JM, Xiao G, Caldwell KL, Henahan D, Shakirova G, Jones RL. Eliminating molybdenum oxide interference in urine cadmium biomonitoring using ICP-DRC-MS. J Anal Spectrom. 2008;23:962–7.

    CAS  Google Scholar 

  184. Praamsma ML, Arnason JG, Parsons PJ. Monitoring Mn in whole blood and urine: a comparison between electrothermal atomic absorption and inorganic mass spectrometry. J Anal Spectrom. 2011;26:1224–32.

    CAS  Google Scholar 

  185. Parsons PJ, Palmer CD, Caldwell KL, Jones RL. Determination of total mercury in urine by inductively coupled plasma mass spectrometry (ICP-MS). In: Holland G, Bandura D, editors. Plasma source mass spectrometry: proceedings of the 9th international conference on plasma source mass spectrometry. London: Royal Society of Chemistry; 2005. p. 59–71.

    Google Scholar 

  186. Taylor A, Jones R, Leblanc A, Mazarrasa O, Lee M-Y, Parsons P, et al. Instability of mercury in specimens of human urine for external quality assessment. Accredit Qual Assur. 2009;14:461–6.

    CAS  Google Scholar 

  187. Arora M, Austin C, Sarrafpour B, Hernandez-Avila M, Hu H, Wright RO, et al. Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels. PLoS One. 2014;9:e97805.

    PubMed  PubMed Central  Google Scholar 

  188. Matt GE, Quintana PJ, Destaillats H, Gundel LA, Sleiman M, Singer BC, et al. Thirdhand tobacco smoke: emerging evidence and arguments for a multidisciplinary research agenda. Environ Health Perspect. 2011;119:1218–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Llaquet H, Pichini S, Joya X, Papaseit E, Vall O, Klein J, et al. Biological matrices for the evaluation of exposure to environmental tobacco smoke during prenatal life and childhood. Anal Bioanal Chem. 2010;396:379–99.

    CAS  PubMed  Google Scholar 

  190. Hecht SS, Stepanov I, Carmella SG. Exposure and metabolic activation biomarkers of carcinogenic tobacco-specific nitrosamines. Acc Chem Res. 2016;49:106–14.

    CAS  PubMed  Google Scholar 

  191. Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharm Rev. 2005;57:79–115.

    CAS  PubMed  Google Scholar 

  192. Jones IA, St Helen G, Meyers MJ, Dempsey DA, Havel C, Jacob P 3rd, et al. Biomarkers of secondhand smoke exposure in automobiles. Tob Control. 2014;23:51–57.

    PubMed  Google Scholar 

  193. Avila-Tang E, Al-Delaimy WK, Ashley DL, Benowitz N, Bernert JT, Kim S, et al. Assessing secondhand smoke using biological markers. Tob Control. 2013;22:164–71.

    PubMed  Google Scholar 

  194. Wei B, Blount BC, Xia B, Wang L. Assessing exposure to tobacco-specific carcinogen NNK using its urinary metabolite NNAL measured in US population: 2011-2012. J Expo Sci Environ Epidemiol. 2016;26:249–56.

    CAS  PubMed  Google Scholar 

  195. Li XF, Mitch WA. Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities. Environ Sci Technol. 2018;52:1681–9.

    CAS  PubMed  Google Scholar 

  196. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for bromoform and chlorodibromomethane. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 2005. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=713&tid=128.

    Google Scholar 

  197. Dick D, Ng KM, Sauder DN, Chu I. In vitro and in vivo percutaneous absorption of 14C-chloroform in humans. Hum Exp Toxicol. 1995;14:260–5.

    CAS  PubMed  Google Scholar 

  198. Leavens TL, Blount BC, DeMarini DM, Madden MC, Valentine JL, Case MW, et al. Disposition of bromodichloromethane in humans following oral and dermal exposure. Toxicol Sci. 2007;99:432–45.

    CAS  PubMed  Google Scholar 

  199. Bradman A, Whyatt RM. Characterizing exposures to nonpersistent pesticides during pregnancy and early childhood in the National Children’s Study: a review of monitoring and measurement methodologies. Environ Health Perspect. 2005;113:1092–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bradman A, Barr DB, Claus Henn BG, Drumheller T, Curry C, Eskenazi B. Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect. 2003;111:1779–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. CDC (U.S. Centers for Disease Control and Prevention). Fourth national report on human exposure to environmental chemicals. Atlanta, GA; CDC; 2009.

  202. Li YF, Venkatesh S, Li D. Modeling global emissions and residues of pesticides. Environ Model Assess. 2004;9:237–43.

    Google Scholar 

  203. Fromme H, Becher G, Hilger B, Volkel W. Brominated flame retardants - exposure and risk assessment for the general population. Int J Hyg Environ Health. 2016;219:1–23.

    CAS  PubMed  Google Scholar 

  204. UNEP (United Nations Environment Programme). All POPs listed in the Stockholm Convention. UNEP; 2008. http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx.

  205. Parry E, Zota AR, Park JS, Woodruff TJ. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs): a six-year temporal trend in Northern California pregnant women. Chemosphere. 2017;195:777–83.

    PubMed  PubMed Central  Google Scholar 

  206. Čechová E, Vojta Š, Kukučka P, Kočan A, Trnovec T, Murínová Ľ, et al. Legacy and alternative halogenated flame retardants in human milk in Europe: Implications for children’s health. Environ Int. 2017;108:137–45.

    PubMed  Google Scholar 

  207. Abdallah MA, Harrad S. Dermal contact with furniture fabrics is a significant pathway of human exposure to brominated flame retardants. Environ Int. 2018;118:26–33.

    CAS  PubMed  Google Scholar 

  208. Sjodin A, Patterson DG Jr., Bergman A. A review on human exposure to brominated flame retardants–particularly polybrominated diphenyl ethers. Environ Int. 2003;29:829–39.

    CAS  PubMed  Google Scholar 

  209. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for polychlorinated biphenyls (PCBs). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 2000. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=142&tid=26.

    Google Scholar 

  210. Batterman SA, Chernyak S, Su FC. Measurement and comparison of organic compound concentrations in plasma, whole blood, and dried blood spot samples. Front Genet. 2016;7:64.

    PubMed  PubMed Central  Google Scholar 

  211. Grandjean P, Budtz-Jorgensen E, Barr DB, Needham LL, Weihe P, Heinzow B. Elimination half-lives of polychlorinated biphenyl congeners in children. Environ Sci Technol. 2008;42:6991–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Shirai JH, Kissel JC. Uncertainty in estimated half-lives of PCBS in humans: impact on exposure assessment. Sci Total Environ. 1996;187:199–210.

    CAS  PubMed  Google Scholar 

  213. Tylavsky FA, Ferrara A, Catellier DJ, Oken E, Li X, Law A, et al. Understanding childhood obesity in the US: the NIH environmental influences on child health outcomes (ECHO) program. Int J Obes. 2019. https://doi.org/10.1038/s41366-019-0470-5.

  214. Braun JM, Gennings C, Hauser R, Webster TF. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124:A6–9.

    PubMed  PubMed Central  Google Scholar 

  215. Carlin DJ, Rider CV, Woychik R, Birnbaum LS. Unraveling the health effects of environmental mixtures: an NIEHS priority. Environ Health Perspect. 2013;121:A6–8.

    PubMed  PubMed Central  Google Scholar 

  216. Hamra GB, Buckley JP. Environmental exposure mixtures: questions and methods to address them. Curr Epidemiol Rep. 2018;5:160–5.

    PubMed  PubMed Central  Google Scholar 

  217. Stafoggia M, Breitner S, Hampel R, Basagana X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: the state of the science. Curr Environ Health Rep. 2017;4:481–90.

    CAS  PubMed  Google Scholar 

  218. Braun JM, Gray K. Challenges to studying the health effects of early life environmental chemical exposures on children’s health. PLoS Biol. 2017;15:e2002800.

    PubMed  PubMed Central  Google Scholar 

  219. Buckley JP, Hamra GB, Braun JM. Statistical approaches for investigating periods of susceptibility in children’s environmental health research. Curr Environ Health Rep. 2019;6:1–7.

  220. Moschet C, Anumol T, Lew BM, Bennett DH, Young TM. Household dust as a repository of chemical accumulation: new insights from a comprehensive high-resolution mass spectrometric study. Environ Sci Technol. 2018;52:2878–87.

    CAS  PubMed  Google Scholar 

  221. Buckley JP, Engel SM, Braun JM, Whyatt RM, Daniels JL, Mendez MA, et al. Prenatal phthalate exposures and body mass index among 4- to 7-year-old children: a pooled analysis. Epidemiology. 2016;27:449–58.

    PubMed  PubMed Central  Google Scholar 

  222. Engel SM, Bradman A, Wolff MS, Rauh VA, Harley KG, Yang JH, et al. Prenatal organophosphorus pesticide exposure and child neurodevelopment at 24 months: an analysis of four birth cohorts. Environ Health Perspect. 2016;124:822–30.

    CAS  PubMed  Google Scholar 

  223. Harley KG, Engel SM, Vedar MG, Eskenazi B, Whyatt RM, Lanphear BP, et al. Prenatal exposure to organophosphorous pesticides and fetal growth: pooled results from four longitudinal birth cohort studies. Environ Health Perspect. 2016;124:1084–92.

    CAS  PubMed  Google Scholar 

  224. Casas M, Nieuwenhuijsen M, Martinez D, Ballester F, Basagana X, Basterrechea M, et al. Prenatal exposure to PCB-153, p,p’-DDE and birth outcomes in 9000 mother-child pairs: exposure-response relationship and effect modifiers. Environ Int. 2015;74:23–31.

    CAS  PubMed  Google Scholar 

  225. Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Murinova LP, et al. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ Health Perspect. 2015;123:730–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Forns J, Stigum H, Hoyer BB, Sioen I, Sovcikova E, Nowack N, et al. Prenatal and postnatal exposure to persistent organic pollutants and attention-deficit and hyperactivity disorder: a pooled analysis of seven European birth cohort studies. Int J Epidemiol. 2018;47:1082–97.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank David Balshaw (National Institute of Environmental Health Sciences) for insightful contributions and Emma Alquist and Timothy Shields (ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health) for technical assistance.

Funding

Research reported in this publication was supported by the ECHO program, Office of The Director, NIH, under award numbers U2COD023375 (Coordinating Center), U24OD023382 (Data Analysis Center, JPB, GBH, EDP, MZ), UG3OD023305, UH3OD023305, UG3OD023271, UH3OD023271, and UG3OD023349, UH3OD023349 (ESB), UG3OD023282 (PIB), UG3OD023365, UH3OD023365 (DHB), UG3OD023316 (MSB), U2CES026544 (TRF), UG3OD023348, UH3OD023348 (RCF), U24OD023319-01 (Person-Reported Outcomes Core, WEF, RI), 3U2CES026533-01S1-3 (SSH), U2CES026542-01 (KK, PJP), UG3OD023275, UH3OD023275 (MPK, AJS-P), UG3OD023342, UH3OD023342 and 1U2COD023375-02 (KL), UG3OD023248, UH3OD023248 (APS), UG3OD023251, UH3OD023251 (DJW), UG3OD023272, UH3OD023272 (AW, TJW). This research was also supported by NIEHS P01ES022841 (TJW), NIEHS R01ES027051 (TJW), US EPA RD 83543301 (TJW), U2CES026542-01 (KK, PJP), P30 ES006694 (PIB), NIEHS P30 ES005022 (ESB), NIDDK R01DK076648 (APS), NIEHS R00ES025817 (APS), NIEHS P01ES022832 (MRK), and US EPA RD-83544201 (MRK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jessie P. Buckley.

Ethics declarations

Conflict of interest

WEF is a founding partner in EnMed MicroAnalytics, a company that provides heavy metal screening for newborns and children. MSB has worked for ICF International as a paid consultant on the US EPA “IRIS Draft Toxicological Review of PCBs: Effects Other Than Cancer.” All other authors declare they have no actual or potential competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the ECHO are listed in Appendix.

Supplementary information

Appendix

Appendix

The authors wish to thank our ECHO colleagues, the medical, nursing and program staff, as well as the children and families participating in the ECHO cohorts. We also acknowledge the contributions of the ECHO program collaborators.

ECHO components: Coordinating Center: Duke Clinical Research Institute, Durham, North Carolina: P. B. Smith, K. L. Newby, D. K. Benjamin. Data Analysis Center: Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland: L. P. Jacobson; Research Triangle Institute, Durham, North Carolina: C. B. Parker. Person-Reported Outcomes Core: Northwestern University, Evanston, IL, USA: R. Gershon, D. Cella. Children’s Health and Exposure Analysis Resource: Icahn School of Medicine at Mount Sinai, New York City, NY, USA: S. L. Teitelbaum, R. O. Wright; Wadsworth Center, Albany, NY, USA: K. M. Aldous. RTI International, Research Triangle Park, NC, USA: T. Fennell; University of Minnesota, Minneapolis, MN, USA: S. S. Hecht, L. Peterson; Westat, Inc., Rockville, MD, USA: B. O’Brien. Idea States Pediatric Clinical Trials Network (ISPCTN): University of Arkansas for Medical Sciences, Little Rock, AR, USA: J. Y. Lee, J. Snowden. ISPCTN Data Coordinating and Operations Center: University of Arkansas for Medical Sciences, Little Rock, AR, USA. Pediatric Cohorts: See below under ECHO cohort awardees and cohort sites. ECHO Cohort Awardees

  • Albert Einstein College of Medicine, Bronx, NY, USA: J. L. Aschner

    • Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA: B. Poindexter

    • Icahn School of Medicine at Mount Sinai, New York, NY, USA: S. L. Teitelbaum, A. Stroustrup, C. Grennings, S. Andra, M. Arora

    • University of Buffalo, Buffalo, NY, USA: A. M. Reynolds

    • University of Florida, Gainesville, FL, USA: M. Hudak

    • University of Rochester, Rochester, NY, USA: G. Pryhuber

    • Vanderbilt University Medical Center, Nashville, TN, USA: P. Moore

    • Wake Forest University Health Sciences, Winston Salem, NC, USA: L. Washburn, J. Helderman

  • Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA: A. J. Elliott

    • The Trustees of Columbia University, New York, NY, USA: W. Fifer, J. Isler, M. Myers, M. Perzanowski, V. Rauh

  • Brigham & Women’s Hospital, Boston, MA, USA: A. A. Litonjua, S. T. Weiss

  • Columbia University, New York, NY, USA: F. P. Perer, J. B. Herbstman

  • Dartmouth College, Hanover, NH, USA: M. R. Karagas

  • Pennsylvania State University, State College, PA, USA: C. J. Newschaffer

    • Children’s Hospital of Philadelphia, Philadelphia, PA, USA: R. T. Schultz

    • Johns Hopkins University, Baltimore, MD, USA: H. E. Volk

    • Kaiser Permanente, Oakland, CA, USA: L. A. Croen

    • Kennedy Krieger Institute, Baltimore, MD, USA: R. J. Landa

    • University of California, Davis, Davis, CA, USA: R. J. Schmidt, S. Ozonoff

    • University of North Carolina, Chapel Hill, Chapel Hill, NC, USA: J. Piven

    • University of Washington, Seattle, WA, USA: S. R. Dager, D. Mayock

  • Emory University, Atlanta, GA, USA: A. L. Dunlop, P. A. Brennan, E. J. Corwin

  • Harvard Pilgrim Health Care, Boston, MA, USA: E. Oken, K. P. Kleinman

  • Icahn School of Medicine at Mount Sinai, Boston, MA, USA: R. J. Wright, R. O. Wright

    • Boston Children’s Hospital, Boston, MA, USA: M. B. Enlow

  • Kaiser Permanente, Oakland, CA, USA: A. Ferrara, L. A. Croen

  • Massachusetts General Hospital, Boston, MA, USA: C. A. Camargo

  • Michigan State University, East Lansing, MI, USA: N. Paneth, M. R. Elliott, P. McKane, J. M. Kerver, D. M. Ruden

    • Henry Ford Health System, Detroit, MI, USA: C. Barone

    • Wayne State University, Detroit, MI, USA: R. M. Douglas

  • Memorial Hospital of Rhode Island, Pawtucket, RI, USA: S. Deoni, V. A. D’Sa

    • Brown University, Providence, RI, USA: J. Braun

    • Johns Hopkins University School of Medicine, Baltimore, MD, USA: S. Carnell

    • The Translational Genomics Research Institute, Phoenix, AZ, USA: M. Huentelman

    • University of California, Davis, Davis, CA, USA: H. G. Mueller, J. L. Wang

    • University of Colorado Boulder, Boulder, CO, USA: M. LeBourgeois

    • Wellesley College, Wellesley, MA, USA: V. Klepac-Ceraj

    • Women & Infants Hospital, Providence, RI, USA: K. Matteson

  • New York State Psychiatric Institute at Columbia University, New York, NY, USA: C. S. Duarte, G. J. Canino, C. E. Monk, J. E. Posner

  • New York University, New York, NY, USA: C. B. Blair

  • New York University School of Medicine, New York, NY, USA: L. Trasande

  • Northeastern University, Boston, MA, USA: A. N. Alshawabkeh

  • Oregon Health & Science University, Portland, OR, USA: C. T. McEvoy, E. R. Spindel

  • University of California, Davis, CA, USA: I. Hertz-Picciotto, D. H. Bennett, J. B. Schweitzer

  • University of Colorado Anschutz Medical Campus, Aurora, CO, USA: D. Dabelea

  • University of Illinois, Urbana, Champaign, IL, USA: S. L. Schantz

    • University of California, San Francisco, CA, USA: T. Woodruff

  • University of New Mexico, Albuquerque, NM, USA: J. L. Lewis

  • University of North Carolina, Chapel Hill, Chapel Hill, NC, USA: M. O’Shea, R. Fry

  • University of Oregon, Eugene, OR, USA: L. D. Leve

    • George Washington University, Washington, DC, USA: J. M. Ganiban

    • Penn State, University Park, PA, USA: J. M. Neiderhiser

  • University of Pittsburgh, Pittsburgh, PA, USA: A. E. Hipwell, K. E. Keenan

  • University of Rochester, New York, NY, USA: T. G. O’Connor, C. Buss, R. K. Miller, P. D. Wadhwa

    • Magee-Women’s Hospital, University of Pittsburgh, Pittsburgh, PA, USA: H. N. Simhan

  • University of Southern California, Los Angeles, CA, USA: F. D. Gilliland, C. V. Breton

  • University of Utah, Salt Lake City, UT, USA: J. B. Stanford, E. B. Clark, C. Porucznik

  • University of Washington, Seattle, WA, USA: C. Karr, S. Sathyanarayana

    • University of California, San Francisco, CA, USA: K. Z. Lewinn, N. R. Bush

    • University of Tennessee Health Sciences Center, Memphis, TN, USA: F. A. Tylavsky

  • University of Wisconsin-Madison, Madison, WI, USA: J. Gern

    • Boston University, Boston, MA, USA: G. O’Connor

    • Brigham & Women’s Hospital, Boston, MA, USA: D. Gold

    • Columbia University, New York, NY, USA: R. Miller

    • Henry Ford Health System, Detroit, MI, USA: C. Johnson, D. Ownby, E. Zoratti

    • Johns Hopkins University, Baltimore, MD, USA: R. Wood

    • Marshfield Clinic Research Foundation, Marshfield, WI, USA: C. Bendixsen

    • University of Cincinnati, Cincinnati, OH, USA: G. K. Hershey

    • Vanderbilt University Medical Center, Nashville, TN, USA: T. Hartert

    • Washington University, St. Louis, MO, USA: L. Bacharier

  • Women & Infants Hospital of Rhode Island, Providence, RI, USA: B. Lester

    • Emory University, Atlanta, GA, USA: C. J. Marsit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckley, J.P., Barrett, E.S., Beamer, P.I. et al. Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program. J Expo Sci Environ Epidemiol 30, 397–419 (2020). https://doi.org/10.1038/s41370-020-0211-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0211-9

Keywords

This article is cited by

Search

Quick links