Skip to main content
Log in

Contribution to MoO3–SiO2 and WO3–SiO2 utilization—active catalysts in jasmine aldehyde, 2-hexyl-1,3-dioxolane and methyllaurate synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Several types of mixed molybdenum and tungsten oxide—SiO2 materials were prepared using sol–gel and wet impregnation method. In all cases, four different loading of MoO3 or WO3 (1, 10, 25 and 40 wt%) were prepared. Materials were characterized using X-ray diffraction, X-ray fluorescence spectroscopy and its acidity was determined by temperature programmed desorption of pyridine. Catalytic activity of these materials was tested in three model reactions providing valuable fine chemicals—aldol condensation, acetalization and esterification. These reactions are usually catalyzed by homogenous catalysts. With increasing interest in environmental protection these catalysts are replaced by heterogeneous ones—offering easy separation from reaction mixture and a possibility of catalyst reuse. More specifically the chosen reactions were: aldol condensation of benzaldehyde with heptanal giving jasmine aldehyde (1), acetalization of heptanal by ethylene glycol giving 2-hexyl-1,3-dioxolane (2) and esterification of lauric acid by methanol giving methyllaurate (3). The prepared materials proved to be catalytically active in above mentioned reactions—in aldol condensation was the best result (78% heptanal conversion, 58% selectivity to jasmine aldehyde, 24 h) obtained using Mo 40 material prepared by impregnation. This material showed to be the best together with W 40 material prepared by sol–gel process in esterification (91 or 94% conversion, 24 h). Acetalization occurs very willingly, best results (heptanal conversion > 90% and selectivity > 90%, 5 h) was obtained using Mo and W 25 and 40 prepared by sol–gel and impregnation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma Z, Wei L, Zhou W, Hou LJB, Li D, Zhao Y (2015) RSC Adv 5:88287–88297

    Article  CAS  Google Scholar 

  2. Primo A, Garcia H (2014) Chem Soc Rev 43:7548–7561

    Article  CAS  PubMed  Google Scholar 

  3. Roessler F (1996) Chimia 50:106–109

    CAS  Google Scholar 

  4. Lee MJ, Chiu JY, Lin HM (2002) Ind Eng Chem Res 41:2882–2887

    Article  CAS  Google Scholar 

  5. Mya OB, Bita M, Louafi I, Djouad A (2018) MethodsX 5:277–282

    Article  PubMed Central  Google Scholar 

  6. Khire S, Bhagwat PV, Fernandes M, Gangund PB, Vadalia H (2012) Indian J Chem Technol 19:342–350

    CAS  Google Scholar 

  7. Brahmkhatri V, Pate A (2010) Kinet Catal -Engl Tr 51:380–384

    Article  CAS  Google Scholar 

  8. Sekerová L, Lhotka M, Vyskočilová E, Faukner T, Slováková E, Brus J, Červený L, Sedláček J (2018) Chem Eur J 24:14742–14749

    Article  CAS  PubMed  Google Scholar 

  9. Tišler Z, Vrbková E, Kocík J, Kadlec D, Vyskočilová E, Červený L (2018) Catal Lett 148:2042–2057

    Article  CAS  Google Scholar 

  10. Vrbková E, Vyskočilová E, Červený L (2015) React Kinet. Mech Catal 114:675–684

    Google Scholar 

  11. Vyskočilová E, Rezková L, Vrbková E, Paterová I, Červený L (2016) Res Chem Intermed 42:725–733

    Article  CAS  Google Scholar 

  12. Vyskočilová E, Sekerová L, Paterová I, Krupka J, Veselý M, Červený L (2018) J Porous Mater 25:273–283

    Article  CAS  Google Scholar 

  13. Vyskočilová E, Gruberová A, Shamzhy M, Vrbková E, Krupka J, Červený L (2018) React Kinet. Mech Catal 124:711–725

    Google Scholar 

  14. Sekerová L, Vyskočilová E, Fantova JS, Paterová I, Krupka J, Červený L (2017) Res Chem Intermed 43:4943–4958

    Article  CAS  Google Scholar 

  15. Luštická I, Vrbková E, Vyskočilová E, Paterová I, Červený L (2013) React Kinet. Mech Catal 108:205–2012

    Google Scholar 

  16. Chandra KL, Saravanan P, Singh RK, Singh VK (2002) Tetrahedron 58:1369–1374 (2002).

    CAS  Google Scholar 

  17. Sekerová L, Spáčilová M, Vyskočilová E, Krupka J, Červený L (2019) React Kinet Mech Catal 127:727–740

    Article  CAS  Google Scholar 

  18. Moghaddam FM, Sharifi A (1995) Synth Commun 25:2457–2461

    Article  CAS  Google Scholar 

  19. Zhao S, Jia Y, Song YF (2014) Catal Sci Techno. 4:2618–2625

    Article  CAS  Google Scholar 

  20. Vyskočilová E, Hašková L, Červený L (2019) Chem Pap 73:1621–1627

    Article  CAS  Google Scholar 

  21. Vyskočilová E, Dušek J, Babiradová M, Krupka J, Paterova I, Červený L (2018) Res Chem Intermed 44:3971–3984

    Article  CAS  Google Scholar 

  22. Vyskočilová E, Malý M, Aho A, Krupka J, Červený L (2016) React Kinet. Mech Catal 118:235–246

    Google Scholar 

  23. Štekrová M, Kubů M, Shamzhy M, Musilová Z, Čejka J (2018) Catal Sci Technol 8:2488–2501

    Article  Google Scholar 

  24. Song Z, Minura N, Tsubota S, Fujitani T, Oyama ST (2008) Catal Let. 121:33–38

    Article  CAS  Google Scholar 

  25. Štekrová M, Minariková H, Vyskočilová E, Kolena J, Červený L (2014) J Porous Mater 21:757–767

    Article  CAS  Google Scholar 

  26. Auroux A, Gervasini A (1990) J Phys Chem 94:6371–6379

    Article  CAS  Google Scholar 

  27. Wang Z (2014) WangL, Jiang Y, Hunger M, HuangJ. ACS Catal 4:1144–1147

    Article  CAS  Google Scholar 

  28. Amrute AP, Bordoloi A, Lucas N, Palraj K, Halligudi SB (2008) Catal Lett 126:286–292

    Article  CAS  Google Scholar 

  29. Maksasithorn S, Praserthdam P, Suriye K, Debecker DP (2015) Microporous Mesoporous Mater 213:125–133

    Article  CAS  Google Scholar 

  30. Umbarkar SB, Kotbagi TV, Biradar AV, Pasricha R, Chanale J, Dongare MK, Mamede AS, Lancelot C, Payen E (2009) J Mol Catal A: Chem 310:150–158

    Article  CAS  Google Scholar 

  31. Huang X, Liu J, Chen J, Xu Y, Shen W (2006) Catal Lett 108:79–86

    Article  CAS  Google Scholar 

  32. Marakatti VS, Mumbaraddi D, Shanbhag GV, Halgeri AB, Maradur SP (2015) RSC Adv 5:93452–93462

    Article  CAS  Google Scholar 

  33. Kočovský P, Ahmed G, Šrogl J, Malkov AV, Steele J (1999) J Org Chem 64:2765–2775

    Article  PubMed  Google Scholar 

  34. Chen K, Bell AT, Iglesia E (2002) J Catal 209:35–42

    Article  CAS  Google Scholar 

  35. Ji W, Chen Y, Kung HH (1997) App Cat A: Gen 161:93–104

    Article  CAS  Google Scholar 

  36. Signore NR, Anandgaonker PL, Gaikwad ST, Rajbhoj AS (2015) Mater Sci-Pol 33:163–168

    Article  CAS  Google Scholar 

  37. Somma F, Struku G (2004) J Cata. 227:344–351

    Article  CAS  Google Scholar 

  38. Dube TI, Moodley DJ, van Schalkwyk C, Botha JM (2003) App Cat A: Gen 255:133–142

    Article  CAS  Google Scholar 

  39. Bouhoute Y, Grekov D, Szeto KC, Merle N, de Mallmann A, Lefebvre F, Raffa G, del Rosal I, Maron L, Gauvin RM, Delevoye L, Taoufik M (2016) ACS Catal 6:1–18

    Article  CAS  Google Scholar 

  40. Mishra G, Behera GC, Singh SK, Parida KM (2012) Dalton Trans 41:14299–14308

    Article  CAS  PubMed  Google Scholar 

  41. Park YM, Lee JY, Chung SH, Park IS, Lee SY, Kim DK, Lee JS, Lee KY (2010) Bioresour Technol 101:s59–s61

    Article  CAS  PubMed  Google Scholar 

  42. Smirnov AA, Selishcheva SA, Yakovlev VA (2018) Catalysts 8(595):1–25

    Google Scholar 

  43. Maerker G, Kenney HE, Bilyk A, Ault WC (1966) J Am Oil Chem Soc 43:104–107

    Article  CAS  Google Scholar 

  44. Han B, Zhang W, Yin F, Liu S, Zhao X, Liu J, Wang C, Yang H (2018) R Soc Open Sci 5(180672):1–16

    Google Scholar 

  45. Han B, Yin F, Liu S, Zhao X, Liu J, Wang C, Yang H, Zhang W (2018) Int J Chem React Eng 17(20180144):1–12

    Google Scholar 

  46. Sekerová L, Vyskočilová E, Červený L (2017) React Kinet. Mech Catal 12:83–95

    Google Scholar 

  47. Swanson HE, Fuyat RK (1954) Standard X-ray diffraction powder patterns, National bureau of standards.

  48. Salje E (1977) Acta Crystallogr 33:574–577

    Article  Google Scholar 

  49. Oi J, Kishimoto A, Kudo T, Hiratani M (1992) J Solid State Chem. 96:13–19

    Article  CAS  Google Scholar 

  50. Vrbková E, Tišler Z, Vyskočilová E, Kadlec D, Červený L (2018) J Chem Technol Biotechnol 93:166–173 (2018)

    Article  CAS  Google Scholar 

  51. Kim DS, Ostromecki M, Wachs IE (1995) Catal Lett 33:209–215

    Article  CAS  Google Scholar 

  52. Hollak SAW, Gosselink RW, van Es DS, Bitter JH (2017) ACS Catal 3:2837–2844

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Vrbková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrbková, E., Šteflová, B., Sekerová, L. et al. Contribution to MoO3–SiO2 and WO3–SiO2 utilization—active catalysts in jasmine aldehyde, 2-hexyl-1,3-dioxolane and methyllaurate synthesis. Reac Kinet Mech Cat 129, 645–658 (2020). https://doi.org/10.1007/s11144-020-01727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01727-6

Keywords

Navigation