Skip to main content

Advertisement

Log in

Turning Cotton to Self-Supported Electrocatalytic Carbon Electrode for Highly Efficient Oxygen Reduction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Exploring self-supported electrodes with effective oxygen reduction reaction (ORR) activity and durability is of great significance for the future development of metal-air batteries and fuel cells. However, there remain serious challenges in identifying suitable materials and developing sustainable fabrication processes to achieve highly efficient, durable and low-cost self-supported air cathodes. In this work, we report a facile and environmentally friendly method to fabricate electrocatalytic carbon electrodes from commercial cotton fabrics with excellent ORR activity. The iron and nitrogen co-doped carbon fabrics possess outstanding ORR catalytic performance comparable with that of Pt/C, with an onset potential of 0.92 V (vs. RHE) and an electron transfer number close to 4. The experimental results have shown that our carbonisation process can give a high specific surface area (1769 m2/g) with a hierarchical porous structure. Doping leads to the formation of Fe-Nχ species with excellent catalytic activity and durability. Finally, both fundamental understanding of liquid Zn-air battery with well-ground catalysts powders from carbon fabric and practical application of self-supported carbon fabric electrode in solid-state Zn-air battery exhibit promising performance. Our results strongly suggest that natural cellulose fabrics can be a promising material for fabricating highly active, durable and affordable air cathodes for many renewable energy devices such as metal-air batteries and fuel cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53(1), 102–121 (2014)

    Article  CAS  Google Scholar 

  2. R. Jasinski, A new fuel cell cathode catalyst. Nature 201(4925), 1212 (1964)

  3. Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015)

    Article  PubMed  CAS  Google Scholar 

  4. F. Cheng, J. Chen, Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41(6), 2172–2192 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4(29), 11156–11178 (2016)

    Article  CAS  Google Scholar 

  6. C.W. Bezerra, L. Zhang, K. Lee, H. Liu, A.L. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53(15), 4937–4951 (2008)

    Article  CAS  Google Scholar 

  7. A. Sarapuu, E. Kibena Põldsepp, M. Borghei, K. Tammeveski, Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. J. Mater. Chem. A 6(3), 776–804 (2018)

    Article  CAS  Google Scholar 

  8. W. Gu, L. Hu, J. Li, E. Wang, Recent advancements in transition metal-nitrogen-carbon catalysts for oxygen reduction reaction. Electroanalysis 30(7), 1217–1228 (2018)

    Article  CAS  Google Scholar 

  9. Y.J. Sa, J.H. Kim, S.H. Joo, Recent progress in the identification of active sites in pyrolyzed Fe-N/C catalysts and insights into their role in oxygen reduction reaction. Journal of Electrochemical Science Technology 8(3), 169–182 (2017)

    Article  CAS  Google Scholar 

  10. X. Zhang, P. Lu, C. Zhang, X. Cui, Y. Xu, H. Qu, J. Shi, Towards understanding ORR activity and electron-transfer pathway of M-Nx/C electro-catalyst in acidic media. J. Catal. 356, 229–236 (2017)

    Article  CAS  Google Scholar 

  11. C. Medard, M. Lefevre, J. Dodelet, F. Jaouen, G. Lindbergh, Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: Activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochim. Acta 51(16), 3202–3213 (2006)

    Article  CAS  Google Scholar 

  12. J. Oh, S. Park, D. Jang, Y. Shin, D. Lim, S. Park, Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction reactions. Carbon 145, 481–487 (2019)

    Article  CAS  Google Scholar 

  13. K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016)

    Article  CAS  Google Scholar 

  14. J. Wang, H. Zhang, C. Wang, Y. Zhang, J. Wang, H. Zhao, M. Cheng, A. Li, J. Wang, Co-synthesis of atomic Fe and few-layer graphene towards superior ORR electrocatalyst. Energy Storage Materials 12, 1–7 (2018)

    Article  Google Scholar 

  15. D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4(3), 760–764 (2011)

    Article  CAS  Google Scholar 

  16. X. Lin, X. Wang, L. Li, M. Yan, Y. Tian, Rupturing cotton microfibers into mesoporous nitrogen-doped carbon nanosheets as metal-free catalysts for efficient oxygen electroreduction. ACS Sustainable Chemistry Engineering 5(11), 9709–9717 (2017)

    Article  CAS  Google Scholar 

  17. J. Liu, D. Zhu, Y. Zheng, A. Vasileff, S.Z. Qiao, Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 8(7), 6707–6732 (2018)

    Article  CAS  Google Scholar 

  18. B. Li, S.P. Sasikala, D.H. Kim, J. Bak, I.D. Kim, E. Cho, S.O. Kim, Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & acidic media. Nano Energy 56, 524–530 (2019)

    Article  CAS  Google Scholar 

  19. C. Song, Z. Zhao, X. Sun, Y. Zhou, Y. Wang, and D.S. Wang, In situ growth of Ag nanodots decorated Cu2O porous nanobelts networks on copper foam for efficient HER electrocatalysis. Small, 1804268 (2019)

  20. F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P.M. Ajayan, M. Ye, and J. Shen, Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: An excellent bifunctional electrocatalyst for overall water splitting. Advanced Materials Interfaces 5(8), 1701507 (2018)

  21. D.U. Lee, J.Y. Choi, K. Feng, H.W. Park, and Z. Chen, Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Advanced Energy Materials 4(6), 1301389 (2014)

  22. J. Gao, Z. Cheng, C. Shao, Y. Zhao, Z. Zhang, L. Qu, A 2D free-standing film-inspired electrocatalyst for highly efficient hydrogen production. J. Mater. Chem. A 5(24), 12027–12033 (2017)

    Article  CAS  Google Scholar 

  23. L. Wang, J. Zhang, W. Jiang, H. Zhao, H. Liu, Free-standing, flexible β-Ni (OH) 2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Appl. Surf. Sci. 433, 88–93 (2018)

    Article  CAS  Google Scholar 

  24. T.Y. Ma, S. Dai, S.Z. Qiao, Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19(5), 265–273 (2016)

    Article  CAS  Google Scholar 

  25. S. De, A.M. Balu, J.C. van der Waal, R. Luque, Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem 7(11), 1608–1629 (2015)

    Article  CAS  Google Scholar 

  26. M. Borghei, J. Lehtonen, L. Liu, and O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), 1703691 (2018)

  27. Q. Zhou, X. Ye, Z. Wan, C. Jia, A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. J. Power Sources 296, 186–196 (2015)

    Article  CAS  Google Scholar 

  28. G. Amirthan, A. Udayakumar, V.B. Prasad, M. Balasubramanian, Synthesis and characterization of Si/SiC ceramics prepared using cotton fabric. Ceram. Int. 35(3), 967–973 (2009)

    Article  CAS  Google Scholar 

  29. L. Chen, T. Ji, L. Mu, J. Zhu, Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111, 839–848 (2017)

    Article  CAS  Google Scholar 

  30. C. Zhang, S. Bhoyate, M. Hyatt, B.L. Neria, K. Siam, P. Kahol, M. Ghimire, S. Mishra, F. Perez, R.K. Gupta, Nitrogen-doped flexible carbon cloth for durable metal free electrocatalyst for overall water splitting. Surface Coatings Technology 347, 407–413 (2018)

    Article  CAS  Google Scholar 

  31. L. Ni, G. Chen, X. Liu, J. Han, X. Xiao, N. Zhang, S. Liang, G. Qiu, R. Ma, Self-supported Fe-doped CoP nanowire arrays grown on carbon cloth with enhanced properties in lithium-ion batteries. ACS Applied Energy Materials 2, 406–412 (2019)

    Article  CAS  Google Scholar 

  32. A. Hu, J. Long, C. Shu, C. Xu, T. Yang, R. Liang, J. Li, Three-dimensional CoNi2S4 nanorod arrays anchored on carbon textiles as an integrated cathode for high-rate and long-life lithium−oxygen battery. Electrochim. Acta 301, 69–79 (2019)

    Article  CAS  Google Scholar 

  33. T.Y. Ma, J. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54(15), 4646–4650 (2015)

    Article  CAS  Google Scholar 

  34. S. Xie, S. Liu, F. Cheng, X. Lu, Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. ChemElectroChem 5(4), 571–582 (2018)

    Article  CAS  Google Scholar 

  35. W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55(8), 2650–2676 (2016)

    Article  CAS  Google Scholar 

  36. J. Xiao, Y. Zhang, Z. Zhang, Q. Lv, F. Jing, K. Chi, S. Wang, Self-supported biocarbon-fiber electrode decorated with molybdenum carbide nanoparticles for highly active hydrogen-evolution reaction. ACS applied materials interfaces 9(27), 22604–22611 (2017)

    Article  PubMed  CAS  Google Scholar 

  37. J. Pallarés, A. González-Cencerrado, I. Arauzo, Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115, 64–73 (2018)

    Article  CAS  Google Scholar 

  38. S. Chakraborty, Y.J. Colón, R.Q. Snurr, S.T. Nguyen, Hierarchically porous organic polymers: Highly enhanced gas uptake and transport through templated synthesis. Chem. Sci. 6(1), 384–389 (2015)

    Article  PubMed  CAS  Google Scholar 

  39. E.O. Pentsak, E.G. Gordeev, V.P. Ananikov, Noninnocent nature of carbon support in metal/carbon catalysts: Etching/pitting vs nanotube growth under microwave irradiation. ACS Catal. 4(11), 3806–3814 (2014)

    Article  CAS  Google Scholar 

  40. Q.M. Ramasse, R. Zan, U. Bangert, D.W. Boukhvalov, Y.-W. Son, K.S. Novoselov, Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 6(5), 4063–4071 (2012)

    Article  PubMed  CAS  Google Scholar 

  41. S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Crystallographic etching of few-layer graphene. Nano Lett. 8(7), 1912–1915 (2008)

    Article  PubMed  CAS  Google Scholar 

  42. X. Li, B.Y. Guan, S. Gao, X.W. Lou, A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environmental Science 12(2), 648–655 (2019)

    Article  Google Scholar 

  43. S. Li, W. Xu, P. Cheng, J. Luo, D. Zhou, J. Li, R. Li, D. Yuan, Bacterial cellulose derived iron and phosphorus co-doped carbon nanofibers as an efficient oxygen reduction reaction electrocatalysts. Synth. Met. 223, 137–144 (2017)

    Article  CAS  Google Scholar 

  44. N. Dwivedi, R.J. Yeo, N. Satyanarayana, S. Kundu, S. Tripathy, C. Bhatia, Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats. Sci. Rep. 5, 7772 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. M. Wu, Q. Tang, F. Dong, Y. Wang, D. Li, Q. Guo, Y. Liu, and J. Qiao, The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn–air battery. PCCP 18(28), 18665–18669 (2016)

  46. Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, Fe–N x moiety-modified hierarchically porous carbons derived from porphyra for highly effective oxygen reduction reaction. J. Mater. Chem. A 5(4), 1526–1532 (2017)

    Article  CAS  Google Scholar 

  47. M. Sun, D. Davenport, H. Liu, J. Qu, M. Elimelech, J. Li, Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 6(6), 2527–2539 (2018)

    Article  CAS  Google Scholar 

  48. W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–N x. J. Am. Chem. Soc. 138(10), 3570–3578 (2016)

    Article  PubMed  CAS  Google Scholar 

  49. L. Liu, G. Zeng, J. Chen, L. Bi, L. Dai, Z. Wen, N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49, 393–402 (2018)

    Article  CAS  Google Scholar 

  50. Y.L. Liu, X.Y. Xu, C.X. Shi, X.W. Ye, P.C. Sun, T.H. Chen, Iron–nitrogen co-doped hierarchically mesoporous carbon spheres as highly efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 7(15), 8879–8885 (2017)

    Article  CAS  Google Scholar 

  51. Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006 (2016)

    Article  PubMed  CAS  Google Scholar 

  52. L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136(31), 11027–11033 (2014)

    Article  PubMed  CAS  Google Scholar 

  53. M.Q. Wang, W.H. Yang, H.H. Wang, C. Chen, Z.Y. Zhou, S.G. Sun, Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 4(11), 3928–3936 (2014)

    Article  CAS  Google Scholar 

  54. G. Wu, C.M. Johnston, N.H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J.S. Lezama Pacheco, S.D. Conradson, K.L. More, D.J. Myers, Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J. Mater. Chem. 21(30), 11392–11405 (2011)

    Article  CAS  Google Scholar 

  55. T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, and C. Su, B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Advanced Science 5(7), 1800036 (2018)

  56. L. Yang, D. Cheng, H. Xu, X. Zeng, X. Wan, J. Shui, Z. Xiang, D. Cao, Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. 115(26), 6626–6631 (2018)

    Article  PubMed  CAS  Google Scholar 

  57. F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016)

    Article  PubMed  CAS  Google Scholar 

  58. Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, Fe/Fe 3 C@ C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J. Mater. Chem. A 6(2), 516–526 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from Australian Research Council (ARC) through ARC Centre of Excellence for Electromaterials Science (ACES). Deakin University’s Advanced Characterization Facility is acknowledged for use of the EM instrument and assistance from Dr. Pavel Cizek. This work was performed in part at the Deakin node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and micro-fabrication facilities for Australia’s researchers. The authors also thank the assistance from Mr. Zhiyu Wang and Dr. Si Qin during the stability test of the liquid cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xungai Wang or Jian Fang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Cao, G., Shao, H. et al. Turning Cotton to Self-Supported Electrocatalytic Carbon Electrode for Highly Efficient Oxygen Reduction. Electrocatalysis 11, 317–328 (2020). https://doi.org/10.1007/s12678-020-00582-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00582-2

Keywords

Navigation