Skip to main content
Log in

Room temperature oxidation of Si nanocrystals at dry and wet air

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Oxidation of HF vapor-etched nanocrystalline silicon films, prepared by drop coating from nanocrystalline Si sol in acetonitrile, was studied. Oxidation of nanocrystalline silicon at room temperature in air with 5% and 86% relative humidity was observed by means of infrared spectroscopy for 2 days. The change in film mass after 15 h of oxidation was determined using quartz crystal microbalance. In dry air, film mass and integral intensity of bands attributed to vibrations in Si3 − x–Si–Hx and Si–O–Si groups changed linearly with time. In humid air, intensity of in Si3 − x–Si–Hx band decays exponentially and intensity of Si–O–Si band increases as a square root of oxidation time. Film mass gain after 15 h of oxidation corresponds to an average oxide layer thickness of 0.02 nm in dry air and 0.51 nm in wet air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Conibeer G, Green M, Corkish R, Cho Y, Cho E, Jiang C, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A, Lin K (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662

    Article  Google Scholar 

  • Falcao BP, Leitao JP, Soares MR, Ricardo L, Aguas H, Martins R, Pereira RN (2019) Oxidation and strain in free-standing silicon nanocrystals. Phys Rev Appl 11:2

    Article  Google Scholar 

  • Froner E, Adamo R, Gaburro Z, Margesin B, Pavesi L, Rigo A, Scarpa M (2006) Luminescence of porous silicon derived nanocrystals dispersed in water: dependence on initial porous silicon oxidation. J Nanopart Res 8:1071–1074

    Article  CAS  Google Scholar 

  • Gaburroa Z, Puckera G, Belluttib P, Pavesi L (2000) Electroluminescence in MOS structures with Si/SiO2 nanometricmultilayers. Solid State Commun 114:33–37

    Article  Google Scholar 

  • Grove AS, Deal BE (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778

    Article  Google Scholar 

  • Hess DW, Deal BE (1977) Kinetics of the thermal oxidation of silicon O2/HCl mixtures. J Electrochem Soc 124:735–739

    Article  CAS  Google Scholar 

  • Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6:38

    Article  Google Scholar 

  • Kanemitsu Y (1995) Light emission from porous silicon and related materials. Phys Rep 263:1–91

    Article  CAS  Google Scholar 

  • Khalilov U, Neyts EC, Pourtois G, van Duin ACT (2011) Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature. J Phys Chem C 115:24839–24848

    Article  CAS  Google Scholar 

  • Koshida N, Matsumoto N (2003) Fabrication and quantum properties of nanostructured silicon. Mater Sci Eng R Rep 40:169–205

    Article  Google Scholar 

  • Kovalevskii AA, Shevchenok AA, Strogova AS (2008) Oxidation behavior of micro- and nanostructured silicon powders. Inorg Mater 44:445–449

    Article  CAS  Google Scholar 

  • Kuz’min GP, Kononov NN, Rozhanskii NV, Surkov AA, Tikhonevich OV (2012) The formation of nanoparticles in laser-induced SiH4 gas reactions. Mater Lett 68:504–506

    Article  Google Scholar 

  • Litvinenko S, Alekseev S, Lysenko V, Venturello A, Geobaldo F, Gulina L, Kuznetsov G, Tolstoy V, Skryshevsky V, Garrone E, Barbier D (2010) Hydrogen production from nano-porous Si powder formed by stain etching. Int J Hydrog Energy 35:6773–6778

    Article  CAS  Google Scholar 

  • Massoud HZ, Plummer JD (1985) Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime. J Electrochem Soc 132:2685–2693

    Article  CAS  Google Scholar 

  • Massoud HZ, Plummer JD (1987) Analytical relationship for the oxidation of silicon in dry oxygen in the thin-film regime. J Appl Phys 62:3416–3422

    Article  CAS  Google Scholar 

  • Melanie LM, Kenneth KC, Kristine L, Gilberto C, Geoffrey AO (2014) Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen. J Phys Chem 119:826–834

    Google Scholar 

  • Morita M, Ohmi T, Hasegawa E, Kawakami M, Ohwada M (1990) Growth of native oxide on a silicon surface. J Appl Phys 68:1272–1280

    Article  CAS  Google Scholar 

  • Ni Z, Zhou S, Zhao S, Peng W, Yang D, Pi XD (2019) Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R Rep 138:85–117

    Article  Google Scholar 

  • Niesar S, Pereira RN, Stegner AR, Erhard N, Hoeb M, Baumer A, Wiggers H, Brandt MS, Stutzmann M (2012) Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv Funct Mater 22:1190–1198

    Article  CAS  Google Scholar 

  • Niwano M, Kageyama J, Kurita K (1994) Infrared spectroscopy study of initial stages of oxidation of hydrogen terminated Si surfaces stored in air. J Appl Phys 76:2157–2162

    Article  CAS  Google Scholar 

  • Ostraat ML, De Blauwe JW, Green ML, Bell LD, Brongersma ML, Casperson J, Flagan RC, Atwater HA (2001) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl Phys Lett 79:433–435

    Article  CAS  Google Scholar 

  • Pai PG, Chao SS, Takagi Y, Lucovsky G (1986) Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J Vac Sci Technol 4:689–694

    Article  CAS  Google Scholar 

  • Pi XD, Mangolini L, Campbell SA, Kortshagen U (2007) Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys Rev B 75:085423

    Article  Google Scholar 

  • Raider SI, Flitsch R, Palmer MJ (1975) Oxide growth on etched silicon in air at room temperature. J Electrochem Soc 122:413–418

    Article  CAS  Google Scholar 

  • Sprung C, Heimfarth J, Erler J, Ziegenbalg G, Patzold C, Singliar U, Frohlich P, Muller A, Schubert C, Roewer G, Bohmhammel K, Mertens F, Seidel J, Bertau M, Kroke M (2015) Hydrogen terminated silicon nanopowders: gas phase synthesis oxidation behavior and Si-H reactivity. Silicon 7:31–42

    Article  CAS  Google Scholar 

  • Weldon MK, Queeney KT, Gurevich AB, Chabal YJ, Raghavachari K (2000) Si–H bending modes as a probe of local chemical structure: thermal and chemical routes to decomposition of H2O on Si (100)-(2×1). J Chem Phys 113:2440–2446

    Article  CAS  Google Scholar 

  • Pi XD, Wang R, Yang D (2014) Density functional theory study on the oxidation of hydrosilylated silicon nanocrystals. J Mater Sci Technol 30:639–643

    Article  CAS  Google Scholar 

  • Yu DK, Zhang RQ, Lee ST (2002) Structural properties of hydrogenated silicon nanocrystals and nanoclusters. J Appl Phys 92:7453–7458

    Article  CAS  Google Scholar 

  • Yuan TH, Pi XD, Yang D (2017) Nonthermal plasma synthesized boron-doped germanium nanocrystals. IEEE J Sel Top Quantum Electron 23:1–5

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge (partial) support from M. V. Lomonosov Moscow State University Program of Development.

Funding

This work was financially supported by Russian Foundation for Basic Research grant no. 17-03-01269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Dorofeev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popelensky, V.M., Dorofeev, S.G., Kononov, N.N. et al. Room temperature oxidation of Si nanocrystals at dry and wet air. J Nanopart Res 22, 54 (2020). https://doi.org/10.1007/s11051-020-4762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-4762-4

Keywords

Navigation