Skip to main content
Log in

Continuous photocatalyzed aerobic oxidation of benzylic organotrifluoroborates to benzaldehydes under Taylor flow conditions

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A simple continuous flow process for aerobic oxidation of benzylic organotrifluoroborates salt by photoredox catalysis under UV irradiation is reported. Using this approach benzylic organotrifluoroborates salts could be easily oxidized to the corresponding benzaldehydes. Good to excellent yields were obtained by applying short residence times in combination with molecular oxygen as oxidant under Taylor flow configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB (2006) Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943–2989

    Article  CAS  Google Scholar 

  2. Zhang X, Rakesh KP, Ravindar L, Qin H-L (2018) Visible-light initiated aerobic oxidations: a critical review. Green Chem 20:4790–4833

    Article  CAS  Google Scholar 

  3. Riente P, Noel T (2019) Application of metal oxide semiconductors in light-driven organic transformations. Catal Sci Technol. https://doi.org/10.1039/c9cy01170f

    Article  CAS  Google Scholar 

  4. Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z (2019) TEMPO in chemical transformations: from homogeneous to heterogeneous. ACS Catal 9:2777–2830

    Article  CAS  Google Scholar 

  5. Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058

    Article  CAS  Google Scholar 

  6. Wang D, Weinstein AB, White PB, Stahl SS (2018) Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem Rev 118:2636–2679

    Article  CAS  Google Scholar 

  7. Leonori D, Aggarwal VK (2015) Stereospecific couplings of secondary and tertiary Boronic esters. Angew. Chem. Int. Ed. 54:1082–1096

    Article  CAS  Google Scholar 

  8. Duan K, Yan X, Liu Y, Li Z (2018) Recent Progress in the radical chemistry of Alkylborates and Alkylboronates. Adv Synth Catal 360:2781–2795

    Article  CAS  Google Scholar 

  9. Lima F, Sharma UK, Grunenberg L, Saha D, Johannsen S, Sedelmeier J, Van der Eycken EV, Ley SV (2017) A Lewis Base catalysis approach for the Photoredox activation of Boronic acids and esters. Angew. Chem. Int Ed 56:15136–15140

    Article  CAS  Google Scholar 

  10. Kabalka GW, Shoup TM, Goudgaon NM (1989) Sodium perborate: a mild and convenient reagent for efficiently oxidizing trialkylboranes. Tetrahedron Lett 30:1483–1486

    Article  CAS  Google Scholar 

  11. Molander GA, Cavalcanti LN (2011) Oxidation of Organotrifluoroborates via Oxone. J Org Chem 76:623–630

    Article  CAS  Google Scholar 

  12. Jiang H, Lykke L, Uttrup Pedersen S, Xiao W-J, Anker Jorgensen K (2012) A practical electromediated ipso-hydroxylation of aryl and alkyl boronic acids under an air atmosphere. Chem Commun 48:7203–7205

    Article  CAS  Google Scholar 

  13. Chatterjee N, Chowdhury H, Sneh K, Goswami A (2015) Hydroxylation of aryl- and alkylboronic acids/esters mediated by iodobenzene diacetate-an avenue for using organoboronic acids/esters as nucleophiles for hydroxylation reactions. Tetrahedron Lett 56:172–174

    Article  CAS  Google Scholar 

  14. Imlandy AK, Bhattacharyya B, Pandey A, Mukherjee S (2018) Picosecond Electron transfer from quantum dots enables a general and efficient aerobic oxidation of Boronic acids. ACS Catal 8:5206–5211

    Article  Google Scholar 

  15. Weng W-Z, Liang H, Zhang B (2018) Visible-light-mediated aerobic oxidation of Organoboron compounds using in situ generated hydrogen peroxide. Org Lett 20:4979–4983

    Article  CAS  Google Scholar 

  16. Brown HC, Kulkarni SV, Khanna VV, Patil VD, Racherla US (1992) Organoboranes for synthesis. 14. Convenient procedures for the direct oxidation of organoboranes from terminal alkenes to carboxylic acids. J. Org. Chem. 57:6173–6177

    Article  CAS  Google Scholar 

  17. Gerleve C, Kischkewitz M, Studer A (2018) Synthesis of α-chiral ketones and chiral alkanes using radical polar crossover reactions of vinyl boron ate complexes. Angew. Chem. Int. Ed. 57:2441–2444

    Article  CAS  Google Scholar 

  18. Liu W, Liu P, Lv L, Li C-J (2018) Metal-free and redox-neutral conversion of Organotrifluoroborates into radicals enabled by visible light. Angew. Chem. Int. Ed. 57:13499–13503

    Article  CAS  Google Scholar 

  19. Grayson JD, Partridge BM (2019) Mild cu-catalyzed oxidation of Benzylic Boronic esters to ketones. ACS Catal 9:4296–4301

    Article  CAS  Google Scholar 

  20. Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L (2018) Copper(II)-catalyzed asymmetric Photoredox reactions: Enantioselective alkylation of imines driven by visible light J. Am Chem Soc 140:15850–15858

    Article  CAS  Google Scholar 

  21. Cambie D, Bottecchia C, Straathof NJW, Hessel V, Noel T (2016) Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem Rev 116:10276–10341

    Article  CAS  Google Scholar 

  22. Noël T (2017) A personal perspective on the future of flow photochemistry J. Flow Chem 7:87–93

    Article  Google Scholar 

  23. Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 45:83–117

    Article  CAS  Google Scholar 

  24. Hone CA, Kappe CO (2019) The use of molecular oxygen for liquid phase aerobic oxidations in continuous flow. Top Curr Chem 377:1–44

    Article  Google Scholar 

  25. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The Hitchhiker's guide to flow chemistry. Chem Rev 117:11796–11893

    Article  CAS  Google Scholar 

  26. Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T (2018) Selective C(sp3)−H aerobic oxidation enabled by Decatungstate Photocatalysis in flow. Angew Chem Int Ed 57:4078–4082

    Article  CAS  Google Scholar 

  27. El Achi N, Penhoat M, Bakkour Y, Rolando C, Chausset-Boissarie L (2016) Continuous UV-flow microsystem for efficient radical generation from Organotrifluoroborates by Photoredox catalysis. Eur J Org Chem 2016:4284–4288

    Article  Google Scholar 

  28. Yi H, Bian C, Hu X, Niu L, Lei A (2015) Visible light mediated efficient oxidative benzylic sp3 C-H to ketone derivatives obtained under mild conditions using O2. Chem Commun 51:14046–14049

    Article  CAS  Google Scholar 

  29. Lee R, Gryn’ova G, Ingold KU, Coote ML (2016) Why are sec-alkylperoxyl bimolecular self-reactions orders of magnitude faster than the analogous reactions of tert-alkylperoxyls? The unanticipated role of CH hydrogen bond donation Phys. Chem Chem Phys 18:23673–23679

    Article  CAS  Google Scholar 

  30. Jow JJ, Lee AC, Chou TC (1987) Paired electro-oxidation. I Production of benzaldehyde J Appl Electrochem 17:753–759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the CNRS and ANR JCJC 2019 “FLORyn” (191364) for the financial support. The authors thank Christophe Penverne who prepared the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laëtitia Chausset-Boissarie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roseau, M., Dhaouadi, N., Rolando, C. et al. Continuous photocatalyzed aerobic oxidation of benzylic organotrifluoroborates to benzaldehydes under Taylor flow conditions. J Flow Chem 10, 347–352 (2020). https://doi.org/10.1007/s41981-019-00053-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00053-w

Keywords

Navigation