Skip to main content
Log in

Compatibilization of recycled rubber aggregate in mortar

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The incorporation of rubber aggregates from tire wastes into mortar is a way to reach new properties of materials based on Portland cements and to generate alternatives for the mechanical recycling of tire rubber waste. However, the rubber aggregates present distinct chemical characteristics when compared to the others mortar components, leading to a low interface interaction between the rubber and the cementitious matrix and consequent reduction of mechanical properties of the material. Thus, the aim of this study was to evaluate the compatibilization in rubberized mortar, using unsaturated polyester resin as coupling agent to cover the rubber particles and chemically bond them to the others mortar components. The compatibilization methods employing the adhesion systems rubber–sand, rubber–cement and rubber–sand–cement were analysed and the compatibilized materials were characterized by mechanical test and scanning electron microscopy. The compatibilization caused positive changes in the rubberized mortar, generating perspectives for development and application of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Day KE, Holtze KE, Metcalfe-Smith JL, Bishop CT, Dutka BJ (1993) Toxicity of leachate from automobile tires to aquatic biota. Chemosphere 27(4):665–675. https://doi.org/10.1016/0045-6535(93)90100-J

    Article  Google Scholar 

  2. Chen SJ, Su HB, Chang JE, Lee WJ, Huang KL, Hsieh LT, Huang YC, Lin WY, Lin CC (2007) Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmos Environ 41(6):1209–1220. https://doi.org/10.1016/j.atmosenv.2006.09.041

    Article  Google Scholar 

  3. Atahan OA, Yücel AÖ (2012) Crumb rubber in concrete: static and dynamic evaluation. Constr Build Mater 36:617–622. https://doi.org/10.1016/j.conbuildmat.2012.04.068

    Article  Google Scholar 

  4. Issa CA, Salem G (2013) Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Constr Build Mater 42:48–52. https://doi.org/10.1016/j.conbuildmat.2012.12.054

    Article  Google Scholar 

  5. Youssf O, Elgawady MA, Mills JE, Ma X (2014) An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Constr Build Mater 53:522–532. https://doi.org/10.1016/j.conbuildmat.2013.12.007

    Article  Google Scholar 

  6. Güneyisi E, Gesoǧlu M, Özturan T (2004) Properties of rubberized concretes containing silica fume. Cem Concr Res 34(12):2309–2317. https://doi.org/10.1016/j.cemconres.2004.04.005

    Article  Google Scholar 

  7. Gisbert AN, Borrell JMG, García FP, Sanchis EJ, Amorós JEC, Alcaraz JS, Vicente FS (2014) Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar. Constr Build Mater 50:671–682. https://doi.org/10.1016/j.conbuildmat.2013.10.018

    Article  Google Scholar 

  8. Turatsinze A, Bonnet S, Granju JL (2007) Potential of rubber aggregates to modify properties of cement based-mortars: improvement in cracking shrinkage resistance. Constr Build Mater 21(1):176–181. https://doi.org/10.1016/j.conbuildmat.2005.06.036

    Article  Google Scholar 

  9. Hernández-Olivares F, Barluenga G, Parga-Landa B, Bollati M, Witoszek B (2007) Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements. Constr Build Mater 21(10):1918–1927. https://doi.org/10.1016/j.conbuildmat.2006.06.030

    Article  Google Scholar 

  10. Hernández-Olivares F, Barluenga G (2004) Fire performance of recycled rubber-filled high-strength concrete. Cem Concr Res 34(1):109–117. https://doi.org/10.1016/s0008-8846(03)00253-9

    Article  Google Scholar 

  11. Shu X, Huang B (2014) Recycling of waste tire rubber in asphalt and portland cement concrete: an overview. Constr Build Mater 67:217–224. https://doi.org/10.1016/j.conbuildmat.2013.11.027

    Article  Google Scholar 

  12. Segre N, Joekes I (2000) Use of tire rubber particles as addition to cement paste. Cem Concr Res 30(9):1421–1425. https://doi.org/10.1016/S0008-8846(00)00373-2

    Article  Google Scholar 

  13. Huang B, Li G, Pang SS, Eggers J (2004) Investigation into waste tire rubber-filled concrete. J Mater Civ Eng 16(3):187–194. https://doi.org/10.1061/(asce)0899-1561(2004)16:3(187)

    Article  Google Scholar 

  14. Lee BI, Burnett L, Miller T, Postage B, Cuneo J (1993) Tyre rubber/cement matrix composites. J Mater Sci Lett 12(13):967–968. https://doi.org/10.1007/BF00420187

    Article  Google Scholar 

  15. Li Z, Li F, Li JSL (1998) Properties of concrete incorporating rubber tyre particles. Mag Concr Res 50(4):297–304. https://doi.org/10.1680/macr.1998.50.4.297

    Article  Google Scholar 

  16. Li G, Garrick G, Eggers J, Abadie C, Stubblefield MA, Pang SS (2004) Waste tire fiber modified concrete. Compos Part B Eng 35(4):305–312. https://doi.org/10.1016/j.compositesb.2004.01.002

    Article  Google Scholar 

  17. Pelisser F, Zavarise N, Longo TA, Bernardin AM (2011) Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition. J Clean Prod 19(6–7):757–763. https://doi.org/10.1016/j.jclepro.2010.11.014

    Article  Google Scholar 

  18. Raghavan D, Huynh H, Ferraris C (1988) Workabilty, mechanical properties, and chemical stability of a recycled tyre rubber-filled cementitious composite. J Mater Sci 33:1745–1752. https://doi.org/10.1023/A:1004372414475

    Article  Google Scholar 

  19. Oikonomou ND (2005) Recycled concrete aggregates. Cem Concr Compos 27(2):315–318. https://doi.org/10.1016/j.cemconcomp.2004.02.020

    Article  Google Scholar 

  20. Si J, Li Y, Yu X (2019) Curing behavior and mechanical properties of na eco-friendly cold-mixed epoxy asphalt. Mater Struct 52(4):81. https://doi.org/10.1617/s11527-019-1382-5.V)

    Article  Google Scholar 

  21. Hohberg I, De Groot GJ, Van der Veen AMH, Wassing W (1997) Development of a leaching protocol for concrete. Stud Environ Sci 71:217–228. https://doi.org/10.1016/s0956-053x(99)00324-4

    Article  Google Scholar 

  22. Marion AM, De Lanève M, De Grauw A (2005) Study of the leaching behaviour of paving concretes: quantification of heavy metal content in leachates issued from tank test using demineralized water. Cem Concr Res 35(5):951–957. https://doi.org/10.1016/j.cemconres.2004.06.014

    Article  Google Scholar 

  23. Azizian MF, Nelson PO, Thayumanavan P, Williamson KJ (2003) Environmental impact of highway construction and repair materials on surface and ground waters: case study. Crumb rubber asphalt concrete. Waste Manag 23(8):719–728. https://doi.org/10.1016/S0956-053X(03)00024-2

    Article  Google Scholar 

  24. Kadir AA, Hassan MIH, Sarani NA, Yatim FSM, Jaini ZM (2017) A practical approach for solving disposal of rubber waste: leachability of heavy metals from foamed concrete containing rubber powder waste (RPW). In: AIP conference proceedings 1885

  25. Guo S, Hu J, Dai Q (2018) A critical review on the performance of portland cement concrete with recycled organic components. J Clean Prod 188:92–112. https://doi.org/10.1016/j.jclepro.2018.03.244

    Article  Google Scholar 

  26. Putthikorn S, Baowan D (2016) Mathematical model for drug molecules encapsulated in lipid nanotube. Phys A Stat Mech Appl 461:46–60. https://doi.org/10.1016/j.physa.2016.05.027

    Article  MathSciNet  MATH  Google Scholar 

  27. Ji J, Childs RF, Mehta M (2001) Mathematical model for encapsulation by interfacial polymerization. J Membr Sci 192(1–2):55–70. https://doi.org/10.1016/S0376-7388(01)00495-1

    Article  Google Scholar 

  28. Ardebili H, Zhang J, Pecht M (2018) Encapsulation technologies for electronic applications. Elsevier, ISBN: 9780128119785

  29. Asbahani AE, Milade K, Badri W, Sala M, Addi EHA, Casabianca AE, Mousadik AE, Hartmann D, Jilale A, Renaud FNR, Elaissari A (2015) Essential oils: from extraction to encapsulation. Int J Pharm 483(1–2):220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069

    Article  Google Scholar 

  30. Wang X, Li G, Li J, Zhang Y, Wook A, Chen Z (2016) Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ Sci 9(8):2533–2538. https://doi.org/10.1039/C6EE00194G

    Article  Google Scholar 

  31. Silva NV, Angulo SC, Barboza ASR, Lange DA, Tavares LM (2019) Improved method to measure the strength and elastic modulus of single aggregate particles. Mater Struct 52(4):77. https://doi.org/10.1617/s11527-019-1380-7

    Article  Google Scholar 

  32. Rothenberg SJ, Flynn DK, Eidson AF, Mewhinney JA, Newton GJ (1987) Determination of specific surface area by krypton adsorption, comparison of three different methods of determining surface area, and evaluation of different specific surface area standards. J Colloid Interface Sci 116(2):541–554. https://doi.org/10.1016/0021-9797(87)90150-0

    Article  Google Scholar 

  33. Wohlleben W, Mielke J, Bianchin A, Ghanem A, Ghanem A, Freiberg H, Rayscher H, Gemeinert M, Hodoroaba VD (2017) Reliable nanomaterial classification of powders using the volume-specific surface area method. J Nanoparticle Res 7(19):61. https://doi.org/10.1007/s11051-017-3741-x

    Article  Google Scholar 

  34. De Lange MF, Lin LC, Gascon J, Vlugt TJH, Kapteijn F (2016) Assessing the surface area of porous solids: limitations, probe molecules, and methods. Langmuir 32(48):12664–12675. https://doi.org/10.1021/acs.langmuir.6b03531

    Article  Google Scholar 

  35. Dominic B, Feireisl E, Hofmanová M (2018) Stochastically forced compressible fluid flows: Navier-Stokes equations with stochastic driving forces. Walter de Gruyter GmbH & Co KG, Boston. ISBN-13: 978-3110490503

  36. Dowson D, Higginson GR (2014) Elasto-hydrodynamic lubrication: international series on materials science and technology. Elsevier, ISBN: 9781483181899

  37. González MG, Cabanelas JC, Baselga J (1988) Applications of FTIR on epoxy resins—identification, monitoring the curing process, phase separation and water uptake. Mater Sci Eng Technol 2:262–284. https://doi.org/10.5772/36323

    Article  Google Scholar 

  38. American Society for Testing and Materials (2003) Standard test method for surface wettability of paper (angle-of-contact method), vol D724(99). ASTM D724-99, West Conshohocken

    Google Scholar 

  39. American Society for Testing and Materials (1998) Standard test method for flexural strength of hydraulic-cement mortars, vol 04. ASTM C348, West Conshohocken

    Google Scholar 

  40. American Society for Testing and Materials (2016) Standard test method for compressive strength of hydraulic cement mortars (using 2-in or [50-mm] cube specimens). ASTM C109/C109M-16, West Conshohocken

    Google Scholar 

  41. Fedroff D, Ahmad S, Savas B (1996) Mechanical properties of concrete with ground waste tire rubber. Transp Res Board J 1532:66–72. https://doi.org/10.1177/0361198196153200110

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP: Proc. 2017/05051-0, CAPES and CNPq for financial support and the Federal University of Pará for collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clodoaldo Saron.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, D.D.P., Ribeiro, S. & Saron, C. Compatibilization of recycled rubber aggregate in mortar. Mater Struct 53, 23 (2020). https://doi.org/10.1617/s11527-020-1456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-020-1456-4

Keywords

Navigation