Skip to main content

Advertisement

Log in

Dynamic Changes in miR-126 Expression in the Hippocampus and Penumbra Following Experimental Transient Global and Focal Cerebral Ischemia–Reperfusion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

miR-126 which is considered one of the most important miRNAs for maintaining vascular integrity, plays an important role in neuroprotection after cerebral ischemia–reperfusion (I-R). Moreover, vascular endothelial growth factor A (VEGFA), sprouty-related EVH1 domain-containing protein 1 (SPRED1), and Raf-1 are also involved in physiological processes of vascular endothelial cells (ECs). This study investigated how miR-126 changes with reperfusion time in different brain tissues after global cerebral ischemia and focal cerebral ischemia and examined the underlying mechanism miR-126 involving VEGFA, SPRED1, and Raf-1 after I-R. The results indicated decreases in the levels of miR-126-3p and miR-126-5p expression in mice and gerbils after I-R, consistent with the results after oxygen and glucose deprivation and reperfusion (OGD/R) in PC12 cells. Glial cells were activated as neuronal damage gradually increased after I-R. Inhibition of miR-126-3p exacerbated the OGD/R-induced cell death and reduced cell viability. After miR-126-3p inhibition, the levels of SPRED1 and VEGFA expression were increased, and p-Raf-1 expression was decreased after OGD/R. Moreover, based on the intervention of miR-126-3p inhibition, we found that the expression of p-Raf-1 was significantly increased after the intervention of siSPRED1, while it was not statistically significant after intervention of siVEGFA. The reduction of miR-126 expression after global and focal cerebral ischemia exacerbated neuronal death, which was closely related to increasing the SPRED1 activation and inhibiting the Raf-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3):399–410. https://doi.org/10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  2. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  3. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  Google Scholar 

  4. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5(5):347–360. https://doi.org/10.1038/nrn1387

    Article  CAS  PubMed  Google Scholar 

  5. Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274(3):H1054–1058. https://doi.org/10.1152/ajpheart.1998.274.3.H1054

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13(1):39–53. https://doi.org/10.1006/scdb.2001.0290

    Article  CAS  PubMed  Google Scholar 

  7. Manoonkitiwongsa PS, Schultz RL, McCreery DB, Whitter EF, Lyden PD (2004) Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 24(6):693–702. https://doi.org/10.1097/01.WCB.0000126236.54306.21

    Article  CAS  PubMed  Google Scholar 

  8. Krum JM, Khaibullina A (2003) Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 181(2):241–257. https://doi.org/10.1016/s0014-4886(03)00039-6

    Article  CAS  PubMed  Google Scholar 

  9. Chen B, Zhang F, Li QY, Gong A, Lan Q (2016) Protective effect of Ad-VEGF-bone mesenchymal stem cells on cerebral infarction. Turk Neurosurg 26(1):8–15. https://doi.org/10.5137/1019-5149.JTN.11488-14.3

    Article  PubMed  Google Scholar 

  10. Kosik KS, Krichevsky AM (2005) The elegance of the MicroRNAs: a neuronal perspective. Neuron 47(6):779–782. https://doi.org/10.1016/j.neuron.2005.08.019

    Article  CAS  PubMed  Google Scholar 

  11. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838. https://doi.org/10.1126/science.1109020

    Article  CAS  PubMed  Google Scholar 

  12. De Pietri TD, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135(23):3911–3921. https://doi.org/10.1242/dev.025080

    Article  CAS  Google Scholar 

  13. Guenther SP, Schrepfer S (2016) miR-126: a potential new key player in hypoxia and reperfusion? Ann Transl Med 4(19):377. https://doi.org/10.21037/atm.2016.08.22

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yan T, Liu Y, Cui K, Hu B, Wang F, Zou L (2013) MicroRNA-126 regulates EPCs function: implications for a role of miR-126 in preeclampsia. J Cell Biochem 114(9):2148–2159. https://doi.org/10.1002/jcb.24563

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. https://doi.org/10.1016/j.devcel.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284. https://doi.org/10.1016/j.devcel.2008.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu A, Chen SJ, Chang YS, Chen HC, Chu PH (2014) Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. Biomed Res Int 2014:418628. https://doi.org/10.1155/2014/418628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:178. https://doi.org/10.1186/1471-2377-13-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei XJ, Han M, Yang FY, Wei GC, Liang ZG, Yao H, Ji CW, Xie RS, Gong CL, Tian Y (2015) Biological significance of miR-126 expression in atrial fibrillation and heart failure. Brazil J Med Biol Res 48(11):983–989. https://doi.org/10.1590/1414-431X20154590

    Article  CAS  Google Scholar 

  20. Zhou Q, Anderson C, Hanus J, Zhao F, Ma J, Yoshimura A, Wang S (2016) Strand and cell type-specific function of microRNA-126 in angiogenesis. Mol Ther 24(10):1823–1835. https://doi.org/10.1038/mt.2016.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poissonnier L, Villain G, Soncin F, Mattot V (2014) miR126-5p repression of ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and transmigration. Cardiovasc Res 102(3):436–447. https://doi.org/10.1093/cvr/cvu040

    Article  CAS  PubMed  Google Scholar 

  22. Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson's disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35(7):1712–1721. https://doi.org/10.1016/j.neurobiolaging.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato R, Nonami A, Taketomi T, Wakioka T, Kuroiwa A, Matsuda Y, Yoshimura A (2003) Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem Biophys Res Commun 302(4):767–772. https://doi.org/10.1016/s0006-291x(03)00259-6

    Article  CAS  PubMed  Google Scholar 

  24. Engelhardt CM, Bundschu K, Messerschmitt M, Renne T, Walter U, Reinhard M, Schuh K (2004) Expression and subcellular localization of spred proteins in mouse and human tissues. Histochem Cell Biol 122(6):527–538. https://doi.org/10.1007/s00418-004-0725-6

    Article  CAS  PubMed  Google Scholar 

  25. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. https://doi.org/10.1038/nm0603-653

    Article  CAS  PubMed  Google Scholar 

  26. Xu Q, Deng F, Xing Z, Wu Z, Cen B, Xu S, Zhao Z, Nepomuceno R, Bhuiyan MI, Sun D, Wang QJ, Ji A (2016) Long non-coding RNA C2dat1 regulates CaMKIIdelta expression to promote neuronal survival through the NF-kappaB signaling pathway following cerebral ischemia. Cell Death Dis 7:e2173. https://doi.org/10.1038/cddis.2016.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan BC, Park JH, Ahn JH, Kim IH, Lee JC, Yoo KY, Choi JH, Hwang IK, Cho JH, Kwon YG, Kim YM, Lee CH, Won MH (2014) Effects of high-fat diet on neuronal damage, gliosis, inflammatory process and oxidative stress in the hippocampus induced by transient cerebral ischemia. Neurochem Res 39(12):2465–2478. https://doi.org/10.1007/s11064-014-1450-8

    Article  CAS  PubMed  Google Scholar 

  28. Yan BC, Ohk TG, Ahn JH, Park JH, Chen BH, Lee JC, Lee CH, Shin MC, Hwang IK, Moon SM, Cho JH, Won MH (2014) Differences in neuronal damage and gliosis in the hippocampus between young and adult gerbils induced by long duration of transient cerebral ischemia. J Neurol Sci 337(1–2):129–136. https://doi.org/10.1016/j.jns.2013.11.034

    Article  CAS  PubMed  Google Scholar 

  29. Shen H, Wang J, Jiang D, Xu P, Zhu X, Zhang Y, Yu X, Won MH, Su PQ, Yan BC (2017) Topiramate improves neuroblast differentiation of hippocampal dentate gyrus in the d-galactose-induced aging mice via its antioxidant effects. Cell Mol Neurobiol 37(5):869–877. https://doi.org/10.1007/s10571-016-0424-6

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, Yu P, Chopp M (2017) MiR-126 affects brain–heart interaction after cerebral ischemic stroke. Transl Stroke Res 8(4):374–385. https://doi.org/10.1007/s12975-017-0520-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yao X, Yao R, Huang F, Yi J (2019) LncRNA SNHG12 as a potent autophagy inducer exerts neuroprotective effects against cerebral ischemia/reperfusion injury. Biochem Biophys Res Commun 514(2):490–496. https://doi.org/10.1016/j.bbrc.2019.04.158

    Article  CAS  PubMed  Google Scholar 

  32. Lee TK, Park JH, Ahn JH, Kim H, Song M, Lee JC, Kim JD, Jeon YH, Choi JH, Lee CH, Hwang IK, Yan BC, Won MH, Kang IJ (2019) Pretreatment of Populus tomentiglandulosa protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury in gerbils via increasing SODs expressions and maintaining BDNF and IGF-I expressions. Chin J Nat Med 17(6):424–434. https://doi.org/10.1016/S1875-5364(19)30050-0

    Article  PubMed  Google Scholar 

  33. Li WA, Efendizade A, Ding Y (2017) The role of microRNA in neuronal inflammation and survival in the post ischemic brain: a review. Neurol Res. https://doi.org/10.1080/01616412.2017.1327505

    Article  PubMed  Google Scholar 

  34. Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, Hong W (2019) Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res 11(2):780–792

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Qu M, Pan J, Wang L, Zhou P, Song Y, Wang S, Jiang L, Geng J, Zhang Z, Wang Y, Tang Y, Yang GY (2019) MicroRNA-126 regulates angiogenesis and neurogenesis in a mouse model of focal cerebral ischemia. Mol Ther Nucleic Acids 16:15–25. https://doi.org/10.1016/j.omtn.2019.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin J, Cao S, Wang Y, Hu Y, Liu H, Li J, Chen J, Li P, Liu J, Wang Q, Zheng L (2018) Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1alpha/VEGFA signalling in hepatocellular carcinoma. J Exp Clin Cancer Res 37(1):113. https://doi.org/10.1186/s13046-018-0727-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong B, Zhou B, Sun Z, Huang S, Han L, Nie H, Chen G, Liu S, Zhang Y, Bao N, Yang X, Feng H (2018) LncRNA-FENDRR mediates VEGFA to promote the apoptosis of brain microvascular endothelial cells via regulating miR-126 in mice with hypertensive intracerebral hemorrhage. Microcirculation 25(8):e12499. https://doi.org/10.1111/micc.12499

    Article  CAS  PubMed  Google Scholar 

  38. Hu J, Zeng L, Huang J, Wang G, Lu H (2015) miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 1608:191–202. https://doi.org/10.1016/j.brainres.2015.02.036

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Liu Z, Hu L, Gu W, Zhu L (2018) Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp Cell Res 370(1):13–23. https://doi.org/10.1016/j.yexcr.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  40. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103

    Article  CAS  PubMed  Google Scholar 

  41. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282. https://doi.org/10.1038/nrg3162

    Article  CAS  PubMed  Google Scholar 

  42. Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, Peng L, Zhao L, Peng S, Xiao Y, Dong S, Cao J, Yu W (2017) MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol 14(10):1326–1334. https://doi.org/10.1080/15476286.2015.1112487

    Article  PubMed  Google Scholar 

  43. Ge HY, Han ZJ, Tian P, Sun WJ, Xue DX, Bi Y, Yang ZH, Liu P (2015) VEGFA expression is inhibited by arsenic trioxide in HUVECs through the upregulation of Ets-2 and miRNA-126. PLoS ONE 10(8):e0135795. https://doi.org/10.1371/journal.pone.0135795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, He Z (2017) MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 494(1–2):144–151. https://doi.org/10.1016/j.bbrc.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  45. Ke XJ, Zhang JJ (2013) Changes in HIF-1alpha, VEGF, NGF and BDNF levels in cerebrospinal fluid and their relationship with cognitive impairment in patients with cerebral infarction. J Huazhong Univ Sci Technolog Med Sci 33(3):433–437. https://doi.org/10.1007/s11596-013-1137-4

    Article  CAS  PubMed  Google Scholar 

  46. Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR (2016) Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 6:26794. https://doi.org/10.1038/srep26794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan C, Gao H, Zheng N, Gao Q, Si Y, Zhao Y (2017) MiR-320 inhibits the growth of glioma cells through downregulating PBX3. Biol Res 50(1):31. https://doi.org/10.1186/s40659-017-0137-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Z, Jiang JD, Kong WJ (2014) Berberine up-regulates hepatic low-density lipoprotein receptor through Ras-independent but AMP-activated protein kinase-dependent Raf-1 activation. Biol Pharm Bull 37(11):1766–1775. https://doi.org/10.1248/bpb.b14-00412

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Special Financial Grant from China Postdoctoral Science Foundation (2015T80592), General Financial Grant from China Postdoctoral Foundation (2014M561720), Key University Science Research Project of Jiangsu Province (16KJA310006), 2018 Medical Scientific Research Project of Jiangsu Provincial Health and Family Planning Commission (No. 141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Chun Yan or Li Dong Ding.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z.H., Wang, L., Gan, P. et al. Dynamic Changes in miR-126 Expression in the Hippocampus and Penumbra Following Experimental Transient Global and Focal Cerebral Ischemia–Reperfusion. Neurochem Res 45, 1107–1119 (2020). https://doi.org/10.1007/s11064-020-02986-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02986-4

Keywords

Navigation