Skip to main content
Log in

Metacaspase MC1 enhances aluminum-induced programmed cell death of root tip cells in Peanut

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Metacaspases are cysteine-dependent proteases, which play essential roles in programmed cell death (PCD), and caspase-3-like protease is the crucial executioner. However, its response mechanism to aluminum (Al)-induced PCD is still elusive.

Methods

Here, the type I metacaspase gene in peanut (Arachis hypoganea L.), AhMC1, was cloned from the Al-sensitive cultivar ZH2. Physiological and biochemical methods, as well as gene expression analyses, were employed to explore its function in Al-induced PCD in peanut root tips.

Results

AhMC1 had a 1068-bp open reading frame, encoding a peptide of 355 amino acids, and the purified protein exhibited a high caspase-3-like protease activity. Its expression levels in different tissues of peanut varieties ZH2 and 99–1507 (Al-tolerant) varied under Al-stress conditions. The subcellular localization indicated that AhMC1 was transferred from mitochondria into the cytoplasm. Furthermore, overexpressing AhMC1 reduced the resistance to Al stress. Sense transgenic plants showed a low relative root growth rate, and reduced superoxide dismutase, peroxidase, and catalase activities, compared with wild-type and antisense transgenic plants under Al-stress conditions, but had a high root-cell death rate, and increased Al and maleic dialdehyde contents.

Conclusions

The data suggest that metacaspase AhMC1 is a positive factor in Al-induced PCD in peanut root tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Al:

Aluminum

AT:

Antisense transgenic

CAT:

Catalase

MC:

Metacaspase

MDA:

Maleic dialdehyde

PCD:

Programmed cell death

POD:

Peroxidase

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

ST:

Sense transgenic

WT:

Wild-type

References

  • Acosta-Maspons A, Sepúlveda-García E, Sánchez-Baldoquín L, Marrero-Gutiérrez J, Pons T, Rocha-Sosa M, González L (2014) Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket. Planta 239:147–160

    PubMed  CAS  Google Scholar 

  • Ahmad R, Zuily-Fodil Y, Passaquet C, Bethenod O, Roche R, Repellin A (2012) Ozone and aging up-regulate type II metacaspase gene expression and global metacaspase activity in the leaves of field-grown maize (Zea mays L.) plants. Chemosphere 87:789–795

    PubMed  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Come D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant 97:104–110

    CAS  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    PubMed  CAS  Google Scholar 

  • Bollhoner B, Zhang B, Stael S et al (2013) Post mortem, function of AtMC9 in xylem vessel elements. New Phytol 200:498–510

    PubMed  Google Scholar 

  • Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr (2005) Rodriguez- executes programmed cell death during plant embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 102:14463–14468

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cao H, Cheng JJ, Liu CX, Li YY, Zou YM, Shu HR (2012) Detection of programmed cell death and cloning of caspase-like gene fragment from Malus robusta under drought stress. Journal of Fruit Science 29:525–529

    CAS  Google Scholar 

  • Chai L, Tudor RL, Poulter NS, Wilkins KA, Eaves DJ, Franklin FCH, Franklin-Tong VE (2017) MAP kinase PrMPK9-1 contributes to the self-incompatibility response. Plant Physiol 174:1226–1237

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng PH, Lian S, Zhao R, Rao XM, McMasters KM, Zhou HS (2013) Combination of autophagy inducer rapamycin and oncolytic adenovirus improves antitumor effect in cancer cells. Virol J 10:293–306

    PubMed  PubMed Central  Google Scholar 

  • Choi CJ, Berges JA (2013) New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis 4:e490–e497

  • Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis type I metacaspases control cell death. Science 330:1393–1397

    PubMed  CAS  Google Scholar 

  • Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death & Differentiation 21:1399–1408

    CAS  Google Scholar 

  • Escamez S, Andre D, Zhang B, Bollhoner B, Pesquet E, Tuominen H (2016) METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation. Biology Open 5:122–129

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fagundes D, Bohn B, Cabreira C, Leipelt F, Dias N, Bodanese-Zanettini MH, Cagliari A (2015) Caspases in plants: metacaspase gene family in plant stress responses. Functional & Integrative Genomics 15:1–11

    Google Scholar 

  • Gilio JM, Marcondes MF, Ferrari D, Juliano MA, Juliano L, Oliveira V, Machado MFM (2017) Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity. BBA - Proteins and Proteomics 1865:388–394

    PubMed  CAS  Google Scholar 

  • Hao L, Goodwin PH, Hsiang T (2007) Expression of a metacaspase gene of Nicotiana benthamiana after inoculation with Colletotrichum destructivum or Pseudomonas syringae pv. Tomato, and the effect of silencing the gene on the host response. Plant Cell Rep 26(10):1879–1888

    PubMed  CAS  Google Scholar 

  • Hao Y, Wang X, Wang K, Li H, Duan X, Tang C, Kang Z (2016) TaMCA1, a regulator of cell death, is important for the interaction between wheat and Puccinia striiformis. Sci Rep 6:26949–26960

    Google Scholar 

  • He R, Drury GE, Rotari V, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283:774–783

    PubMed  CAS  Google Scholar 

  • Hill SM, Nystrom T (2015) The dual role of a yeast metacaspase: what doesn’t kill you makes you stronger. BioEssays 37:525–531

    PubMed  PubMed Central  Google Scholar 

  • Hoeberichts FA, ten Have A, Woltering EJ (2003) A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517–522

    PubMed  CAS  Google Scholar 

  • Huang WJ, Oo TL, He HY, Wang AQ, Zhan J, Li CZ, Wei SQ, He LF (2014a) Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips. Bot Stud 55:67–79

    PubMed  PubMed Central  Google Scholar 

  • Huang W, Yang X, Yao S, LwinOo T, He H, Wang A, Li C, He L (2014b) Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. Plant Physiology & Biochemistry 82:76–84

    CAS  Google Scholar 

  • Huang L, Zhang H, Hong Y, Liu S, Li D, Song F (2015) Stress-responsive expression, subcellular localization and protein–protein interactions of the rice metacaspase family. Int J Mol Sci 16:16216–16241

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SM, Bae C, Oh SK, Choi D (2013) A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants. Mol Plant Pathol 14:557–566

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon SI, Hwang DJ (2013) Expression analysis of the metacaspase gene family in Arabidopsis. Journal of Plant Biology 56:391–398

    CAS  Google Scholar 

  • Lam E, Zhang Y (2012) Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci 17:487–494

    PubMed  CAS  Google Scholar 

  • Lema Asqui S, Vercammen D, Serrano I, Valls M, Rivas S, Van Breusegem F, Conlon FL, Dangl JL, Coll NS (2017) AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing in planta. New Phytol 218:1156–1166

    PubMed  Google Scholar 

  • Li S, Franklin-Tong VE (2008) Self-incompatibility in Papaver: a MAP kinase signals to trigger programmed cell death. Plant Signal Behav 3:243–245

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Deng Z, Chen J, Wang S, Hao L, Li D (2016a) Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Plant Physiology & Biochemistry 105:90–101

    CAS  Google Scholar 

  • Liu H, Liu J, Wei Y (2016b) Identification and analysis of the metacaspase gene family in tomato. Biochemical & Biophysical Research Communications 479:523–529

    CAS  Google Scholar 

  • Martinon F, Tschopp J (2004) Inflammatory Caspases: linking anintracellular innate immune system to autoinflammatorydiseases. Cell 117:561–574

  • Matsumoto H, Motoda H (2013) Oxidative stress is associated with aluminum toxicity recovery in apex of pea root. Plant Soil 363:399–410

    CAS  Google Scholar 

  • Minina EA, Smertenko AP, Bozhkov PV (2014) Vacuolar cell death in plants. Autophagy 10:928–929

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pan CL, Yao SC, Xiong WJ, Luo SZ, Wang YL, Wang AQ, Xiao D, Zhan J, He LF (2017) Nitric oxide inhibits Al-induced programmed cell death in root tips of Peanut (Arachis hypogaea L.) by affecting physiological properties of antioxidants systems and Cell Wall. Front Physiol 8:309–314

    Google Scholar 

  • Pena MS, Cabral GC, Fotoran WL, Perez KR, Stolf BS (2017) Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania amazonensis (L.). Cell Death and Disease 8:e2645–e2654

    PubMed  CAS  Google Scholar 

  • Phan TT, Sun B, Niu JQ, Tan QL, Li J, Yang LT, Li YR (2016) Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep 35:1–15

    Google Scholar 

  • Tan K, Wen C, Feng H, Chao X, Su H (2016) Nuclear dynamics and programmed cell death in Arabidopsis root hairs. Plant Sci 253:77–85

    PubMed  CAS  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov P (2011) Metacaspases. Cell Death Differ 18:1279–1288

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tsiatsiani L, Timmerman E, Bock PJ, Vercammen D, Stael S, van de Cotte B, Staes A, Goethals M, Beunens T, Van Damme P, Gevaert K, Van Breusegem F (2013) The Arabidopsis METACASPASE9 Degradome. Plant Cell 25:2831–2847

    PubMed  PubMed Central  CAS  Google Scholar 

  • Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases : two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  • Vercammen D, Cotte BVD, Jaeger GD et al (2004) Type II Metacaspases Atmc 4 and Atmc 9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336

    PubMed  CAS  Google Scholar 

  • Wang L, Zhang H (2014) Genomewide survey and characterization of metacaspase gene family in rice (Oryza sativa). J Genet 93:93–102

    PubMed  CAS  Google Scholar 

  • Wang W, Pan J, Zheng K, Chen H, Shao H, Guo Y, Bian H, Han N, Wang J, Zhu M (2009) Ced-9 inhibits Al-induced programmed cell death and promotes Al tolerance in tobacco. Biochemical & Biophysical Research Communications 383:141–145

    CAS  Google Scholar 

  • Wang X, Wang X, Feng H, Tang C, Bai P, Wei G, Huang L, Kang Z (2012) TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 25:755–764

    PubMed  CAS  Google Scholar 

  • Wang C, Lü P, Zhong S, Chen H, Zhou B (2017a) LcMCII-1, is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis. Plant Cell Rep 36:89–102

    PubMed  CAS  Google Scholar 

  • Wang Y, Liu X, Tao L, Xu P, Gao X, Li H, Yang Z, Wu W (2017b) Expression and immunogenicity of VP40 protein of ZEBOV. Archives of Iranian Medicine 20:246–250

    PubMed  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    PubMed  CAS  Google Scholar 

  • Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66:969–982

    PubMed  CAS  Google Scholar 

  • Wilkins KA, Bosch M, Haque T, Teng N, Poulter NS, Franklin-Tong VE (2015) Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol. Plant Physiol 167:766–779

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wrzaczek M, Vainonen JP, Stael S et al (2015) GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis. EMBO J 34:55–66

    PubMed  CAS  Google Scholar 

  • Yao SC, Huang WJ, Pan CL, Zhan J, He LF (2016) Caspase-like proteases regulate aluminum-induced programmed cell death in peanut. Plant Cell Tissue & Organ Culture 127:691–703

    CAS  Google Scholar 

  • Yao SC, Zhan J, Pan CL, Xiong WJ, Xiao D, Wang YL, Shen H, Wang AQ, He LF (2019) Identification and validation of reference genes for real-time qPCR normalization during Al-induced programmed cell death in peanut. Biol Plant 63:237–246

    Google Scholar 

  • Zhan J, He HY, Wang TJ, Wang AQ, Li CZ, He LF (2013) Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L. Plant Sci 210:108–117

    PubMed  CAS  Google Scholar 

  • Zhan J, Li W, He HY, Li CZ, He LF (2014) Mitochondrial alterations during Al-induced PCD in peanut root tips. Plant Physiology & Biochemistry 75:105–113

    CAS  Google Scholar 

  • Zhang C, Gong P, Wei R, Li S, Zhang X, Yu Y, Wang Y (2013) The metacaspase gene family of Vitis vinifera L.: characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes. Gene 528:267–276

    PubMed  CAS  Google Scholar 

  • Zhao P, Zhou XM, Zhang LY, Wang W, Ma LG, Yang LB, Peng XB, Bozhkov PV, Sun MX (2013) A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos. PLoS Biol 11:e1001655–e1001670

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31776190, 31560346, 31660350, 31701356, and 31860334), the Guangxi Natural Science Foundation of China (Grant No. 2016GXNSFBA380223), the Training Program for 1000 Young and Middle-aged Backbone Teachers of Guangxi Higher Education Institution in 2019.

Author information

Authors and Affiliations

Authors

Contributions

JZ and LFH conceived the general strategy; SCY, LSZ and CLP performed the experiments and analyzed the data; SZL and DX interpreted the results; AQW and WJX cultured the seedlings for experiments; SCY and SZL wrote the manuscript. JZ revised the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jie Zhan or Longfei He.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Juan Barcelo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 17 kb)

ESM 2

(PDF 380 kb)

ESM 3

(PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Luo, S., Pan, C. et al. Metacaspase MC1 enhances aluminum-induced programmed cell death of root tip cells in Peanut. Plant Soil 448, 479–494 (2020). https://doi.org/10.1007/s11104-020-04448-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04448-w

Keywords

Navigation