Skip to main content
Log in

Cycling of methylmercury and other redox-sensitive compounds in the profundal zone of a hypereutrophic water supply reservoir

  • RESTORATION OF EUTROPHIC LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The byproducts of anaerobic biogeochemical processes, many mediated at the sediment–water interface, can degrade water quality in the bottom of reservoirs. Using both experimental sediment–water chambers and field monitoring, this study assessed nutrient and metals cycling in the profundal zone of hypereutrophic Hodges Reservoir, San Diego (maximum depth = 29.1 m; maximum surface area = 6.0 km2). A focus of the study was methylmercury (MeHg), a toxic form of mercury that bioaccumulates in aquatic food webs. Results confirmed that oxic conditions repressed release of redox-sensitive compounds (e.g., MeHg, ammonia, phosphate, manganese) from profundal sediment, though high sediment oxygen demand complicated experimental efforts to maintain a well-oxygenated sediment–water interface. In both experimental chambers and in the reservoir, patterns of MeHg cycling correlated with manganese cycling, suggesting that moderately low redox conditions that stimulate reductive dissolution of manganese also enhance net Hg methylation. Sediment MeHg flux was tightly coupled with sulfate uptake under moderately reduced conditions, reinforcing the link between sulfate-reducing bacteria and Hg methylation. Results highlight the fact that hypolimnetic oxygenation in Hodges Reservoir using pure oxygen gas, which is planned for spring 2020, must maintain high oxygen concentrations at the profundal sediment–water interface. In addition, results indicate that the presence of manganese in surface water can be used as an indicator of oxygenation’s effectiveness in lowering rates of internal nutrient and MeHg loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Most data generated during this study are included in this published article and available in Online Resources 1. Any additional data can be provided by the corresponding author, Dr. Marc Beutel, upon request.

References

  • Alpers, C. N., J. A. Fleck, M. Marvin-DiPasquale, C. A. Stricker, M. Stephenson & H. E. Taylor, 2014. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality. Science of the Total Environment 484: 276–287.

    CAS  Google Scholar 

  • American Public Health Association (APHA), 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, D.C: American Public Health Association.

    Google Scholar 

  • Andersen, F. Ø. & P. Ring, 1999. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 408/409: 175–183.

    Google Scholar 

  • Archer, A. D. & P. C. Singer, 2006. An evaluation of the relationship between SUVA and NOM coagulation using the ICR database. Journal‐American Water Works Association 98(7): 110–123.

    CAS  Google Scholar 

  • Balogh, S. J., Y. H. Nollet & E. B. Swain, 2004. Redox chemistry in Minnesota streams during episodes of increased methylmercury discharge. Environmental Science and Technology 38: 4921–4927.

    CAS  PubMed  Google Scholar 

  • Benoit, J., C. Gilmour, R. Mason & A. Heyes, 1999. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science and Technology 33: 951–957.

    CAS  Google Scholar 

  • Benoit, J., C. Gilmour, A. Heyes, R. Mason & C. Miller, 2003. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In Cai, Y. & O. C. Braids (eds), Biogeochemistry of Environmentally Important Trace Elements.Washington DC: American Chemistry Society, pp. 262–297.

    Google Scholar 

  • Betancourt, C., F. Jorge, R. Suarez, M. W. Beutel & S. Y. Gebremariam, 2010. Manganese sources and cycling in a tropical eutrophic water supply reservoir, Paso Bonito Reservoir, Cuba. Lake and Reservoir Management 26: 217–26.

    CAS  Google Scholar 

  • Beutel, M. W., 2000. Dynamics and Control of Nutrient, Metal and Oxygen Fluxes at the Profundal Sediment-Water Interface of Lakes and Reservoirs. Dissertation, University of California Berkeley, Berkeley

  • Beutel, M. W., 2001. Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia 466: 107–117.

    CAS  Google Scholar 

  • Beutel, M. W., 2006. Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation. Ecological Engineering 28: 271–279.

    Google Scholar 

  • Beutel, M. W. & A. J. Horne, 1999. A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Lake and Reservoir Management 15: 285–297.

    CAS  Google Scholar 

  • Beutel, M. W., N. Burley & K. Culmer, 2006. Quantifying the effects of water velocity and oxygen concentration on sediment oxygen demand. Hydrological Science and Technology, 22(1/4): 15.

    Google Scholar 

  • Beutel, M. W., I. Hannoun, J. Pasek & K. Bowman Kavanagh, 2007. Evaluation of hypolimnetic oxygen demand in a large eutrophic raw water reservoir, San Vicente Reservoir, California. Journal of Environmental Engineering 133: 130–132.

    CAS  Google Scholar 

  • Beutel, M. W., N. R. Burley & S. R. Dent, 2008. Nitrate uptake rate in anoxic profundal sediments from a eutrophic reservoir. Hydrobiologia 610(1): 297–306.

    CAS  Google Scholar 

  • Beutel, M. W., S. R. Dent, B. Reed, P. Marshall, S. Gebremariam, B. C. Moore, B. Cross, P. Gantzer & E. Shallenberger, 2014. Effects of hypolimnetic oxygen addition on mercury bioaccumulation in Twin Lakes, Washington, USA. Science of the Total Environment 496: 688–700.

    CAS  Google Scholar 

  • Boyd, E. & T. Barkay, 2012. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. Frontiers in Microbiology 3: 1–13.

    Google Scholar 

  • Boström, B., J. A. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 179, 229–244.

    Google Scholar 

  • Böttcher, M. E. & B. Thamdrup, 2001. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochimica et Cosmochimica Acta 65(10): 1573–1581.

    Google Scholar 

  • Chadwick, S. P., C. L. Babiarz, J. P. Hurley & D. E. Armstrong, 2006. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Science of the Total Environment 368(1): 177–188.

    CAS  Google Scholar 

  • Chow, A. T., A. T. O'geen, R. A. Dahlgren, F. J. Díaz, K. H. Wong & P. K. Wong, 2011. Reactivity of litter leachates from California oak woodlands in the formation of disinfection by-products. Journal of Environmental Quality 40(5): 1607–1616.

    CAS  PubMed  Google Scholar 

  • Cook, R. B., 1984. Distributions of ferrous iron and sulfide in an anoxic hypolimnion. Canadian Journal of Fisheries and Aquatic Sciences 41(2): 286-293.

    CAS  Google Scholar 

  • Cooke, G. D., E. B. Welch, S. A. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs, 3rd ed. Boca Raton, FL: CRC Press LLC.

    Google Scholar 

  • Cubas, F. J., R. D. Holbrook, J. T. Novak, A. N. Godrej & T. J. Grizzard, 2019. Effective depth controls the nitrate removal rates in a water supply reservoir with a high nitrate load. Science of the Total Environment 673: 44–53.

    CAS  Google Scholar 

  • Cumming, G., F. Fidler & D. L. Vaux, 2007. Error bars in experimental biology. Journal of Cell Biology 177(1): 7–11.

    CAS  PubMed  Google Scholar 

  • Davison, W., 1993. Iron and manganese in lakes. Earth-Science Reviews 34: 119–163.

    CAS  Google Scholar 

  • DeLaune, R., A. Jugsujinda, I. Devai & W. Patrick, 2004. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes. Journal of Environmental Science and Health A39(8): 1925–1933.

    CAS  Google Scholar 

  • Downing, B. D., B. A. Bergamaschi, D. G. Evans & E. Boss, 2008. Assessing contribution of DOC from sediments to a drinking water reservoir using optical profiling. Lake and Reservoir Management 24: 381–391.

    Google Scholar 

  • Duvil, R., M. W. Beutel, B. Fuhrmann & M. Seelos, 2018. Effect of oxygen, nitrate and aluminum addition on methylmercury efflux from mine-impacted reservoir sediment. Water Research 144: 740-751.

    CAS  PubMed  Google Scholar 

  • Feng, X., H. Jiang, G. Qiu, H. Yan, G. Li & Z. Li, 2009. Mercury mass balance study in Wujiangdu and Dongfeng reservoirs, Guizhou, China. Environmental Pollution, 157(10): 2594–2603.

    CAS  PubMed  Google Scholar 

  • Forsberg, C., 1989. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia 176(1): 263–277.

    Google Scholar 

  • Fuhrmann, B. & M. W. Beutel, 2019. Consequences of inorganic mercury, organic carbon, and microbial inhibitors on mercury methylation in profundal sediment of a hypereutrophic reservoir. California Lake Management Society Conference, San Diego, California, October 2019.

  • Gill, G., 2008. Task 3 – atmospheric mercury deposition studies. In: Transport, Cycling, and Fate of Mercury and Monomethyl Mercury in the San Francisco Delta and Tributaries: an Integrated Mass Balance Assessment Approach. Calfed Mercury Project 2008 Report. Moss Landing Marine Laboratory, Moss Landing, California, USA.

  • Gill, G. A., N. S. Bloom, S. Cappellino, C. Driscoll, C. Dobbs, L. McShea, R. P. Mason & J. Rudd, 1999. Sediment-water fluxes of mercury in Lavaca Bay, Texas. Environmental Science and Technology 33: 663–669.

    CAS  Google Scholar 

  • Gilmour, C. C., G. A. Gill, M. C. Stordal & E. Spiker 1998. Mercury methylation and sulfur cycling in the Northern Everglades. Biogeochemistry 40: 326–346.

    Google Scholar 

  • Gilmour, C. G., E. A. Henry & R. Mitchell, 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science and Technology 26: 2281–2287.

    CAS  Google Scholar 

  • Golterman, H. L., 2001. Phosphate release from anoxic sediments or ‘What did Mortimer really write?’ Hydrobiologia 450: 99–106.

    CAS  Google Scholar 

  • Hines, N. A., P. L. Brezonik & D. R. Engstrom, 2004. Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota. Environmental Science and Technology 38(24): 6610–6617.

    CAS  PubMed  Google Scholar 

  • Holmer, M. & P. Storkholm, 2001. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshwater Biology 46: 431–451.

    CAS  Google Scholar 

  • Holmes, J. & D. Lean, 2006. Factors that influence methylmercury flux rates from wetland sediments. Science of the Total Environment 368(1): 306–319.

    CAS  Google Scholar 

  • Hsu-Kim, H., K. H. Kucharzyk, T. Zhang & M. A. Deshusses, 2013. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science and Technology 47(6): 2441–2456.

    CAS  PubMed  Google Scholar 

  • Huser, B. J., S. Egemose, H. Harper, M. Hupfer, H. Jensen, K. M. Pilgrim, K. Reitzel, E. Rydin & M. Futter, 2016. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Research 97: 122–132.

    CAS  PubMed  Google Scholar 

  • Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235(1): 731–743.

    Google Scholar 

  • Jeremiason, J. D., D. R. Engstrom, E. B. Swain, E. A. Nater, B. M. Johnson, J. E. Almendinger, B. A. Monson & R. K. Kolka, 2006. Sulfate addition increases methylmercury production in an experimental wetland. Environmental Science and Technology 40(12): 3800–3806.

    CAS  PubMed  Google Scholar 

  • Kelly, C. A., J. W. Rudd, V. L. S. Louis & A. Heyes, 1995. Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems? Water, Air and Soil Pollution 80(1-4): 715–724.

    CAS  Google Scholar 

  • Kraus, T. E., B. A. Bergamaschi, P. J. Hernes, D. Doctor, C. Kendall, B. D. Downing & R. F. Losee, 2011. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations. Lake and Reservoir Management 27: 205–219.

    CAS  Google Scholar 

  • Kuwabara, J. S., C. N. Alpers, M. Marvin-DiPasquale, B. R. Topping, J. L. Carter, A. R. Stewart, S. V. Fend, F. Parchaso, G. E. Moon & D. P. Krabbenhoft, 2003. Sediment-Water Interactions Affecting Dissolved-Mercury Distributions in Camp Far West Reservoir, California. 03–4140, United States Geological Survey Investigations Report.

  • Kuwabara, J. S., M. Marvin-Dipasquale, W. Praskins, E. Byron, B. R. Topping, J. L. Carter, S. V. Fend, F. Parchaso, D. P. Krabbenhoft & M. S. Gustin, 2002. Flux of Dissolved Forms of Mercury Across the Sediment-Water Interface in Lahontan Reservoir, NV. 02–4138, United States Geological Survey Investigations Report.

  • Lee, R. M. & T. W. Biggs, 2015. Impacts of land use, climate variability, and management on thermal structure, anoxia, and transparency in hypereutrophic urban water supply reservoirs. Hydrobiologia 745(1): 263–284.

    CAS  Google Scholar 

  • Lee, R. M., T. Biggs & X. Fang, 2018. Thermal and hydrodynamic changes under a warmer climate in a variably stratified hypereutrophic reservoir. Water 10(9): 1284.

    Google Scholar 

  • Loeppert, R. H. & W. P. Inskeep. 1996. Iron. In D.L. Sparks (ed), Methods of Soil Analysis. Part 3. SSSA Book Series, Vol. 5. Madison, WI: SSSA, pp. 639–664.

    Google Scholar 

  • Lovley, D. R., D. E. Holmes and K. P. Nevin, 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology 49:219–286.

    CAS  PubMed  Google Scholar 

  • Madigan, M. T., J. M. Martinko, P. V. Dunlap & D. P. Clark, 2008. Brock Biology of Microorganisms 12th Ed. Pearson, New York.

    Google Scholar 

  • Martín-Doimeadios, R. C., E. Tessier, D. Amouroux, R. Guyoneaud, R. Duran, P. Caumette & O. Donard, 2004. Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Marine Chemistry 90(1–4): 107–123.

    Google Scholar 

  • Matthews, D., D. Babcock, J. Nolan, A. Prestigiacomo, S. Effler, C. Driscoll, S. Todorova & K. Kuhr, 2013. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environmental Research 125: 52–60.

    CAS  PubMed  Google Scholar 

  • Muellner, M.G., E.D. Wagner, K. McCalla, S.D. Richardson, Y.T. Woo & M.J. Plewa, 2007. Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environmental Science and Technology 41(2): 645–651.

    CAS  PubMed  Google Scholar 

  • Munger, Z. W., C. C. Carey, A. B. Gerling, K. D. Hamre, J. P. Doubek, S. D. Klepatzki, R. P. McClure & M. E. Schreiber, 2016. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir. Water Research 106: 1–14.

    CAS  PubMed  Google Scholar 

  • Murray, T. E., 1995. The correlation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Canadian Journal of Fisheries and Aquatic Sciences, 52(6): 1190–1194.

    CAS  Google Scholar 

  • Negrey, J., A. Melwani, M. Stephenson & J. Davis, 2011. Mercury in California lakes and reservoirs: Factors influencing bioaccumulation. In 10th International Conference on Mercury as a Global Pollutant, Halifax, Nova Scotia, Canada (p. 227).

  • Nürnberg, G. K., 1988. Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Canadian Journal of Fisheries and Aquatic Sciences 45(3): 453–462.

    Google Scholar 

  • Nürnberg, G. K., 1994. Phosphorus release from anoxic sediments: What we know and how we can deal with it. Limnetica 10: 1–4.

    Google Scholar 

  • Osgood, R. A. 1988. Lake mixes and internal phosphorus dynamics. Archiv für Hydrobiologie 113: 629–638.

    CAS  Google Scholar 

  • Oremland, R. S., C. W. Culbertson & M. R. Winfrey, 1991. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Applied Environmental Microbiology 57(1): 130–137.

    CAS  PubMed  Google Scholar 

  • Paerl, H.W. & R. S. Fulton, 2006. Ecology of harmful cyanobacteria. In: Graneli E (ed) Ecology of Harmful Algae. Springer, Berlin, 95-109.

    Google Scholar 

  • Preece, E. P., B. C., Moore, M. M. Skinner, A. Child & S. Dent, 2019. A review of the biological and chemical effects of hypolimnetic oxygenation. Lake and Reservoir Management doi:10.1080/10402381.2019.1580325.

    Article  Google Scholar 

  • Roden, E. E. & J. W. Edmonds, 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe (III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139(3): 347–378.

    CAS  Google Scholar 

  • Rysgaard, S., N. Risgaard‐Petersen, S. Niels Peter, J. Kim & N. Lars Peter, 1994. Oxygen regulation of nitrification and denitrification in sediments. Limnology and Oceanography 39(7): 1643–1652.

    CAS  Google Scholar 

  • Singleton, V. L. & J. C. Little, 2006. Designing hypolimnetic aeration and oxygenation systems – a review. Environmental Science and Technology, 40(24): 7512–7520.

    CAS  PubMed  Google Scholar 

  • Skoog, A. C. & V. A. Arias-Esquivel, 2009. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Science of the Total Environment 407(23): 6085–6092.

    CAS  Google Scholar 

  • Schauser, I., I. Chorus & J. Lewandowski, 2006. Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochimica et Hydrobiologica 34(4): 325–332.

    CAS  Google Scholar 

  • Sellers, P., C. A. Kelly & J. W. Rudd, 2001. Fluxes of methylmercury to the water column of a drainage lake: the relative importance of internal and external sources. Limnology and Oceanography 46(3): 623–631.

    CAS  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2000. Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake. Lake and Reservoir Management 16(3): 195–204.

    Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506(1–3): 135–145.

    Google Scholar 

  • Spears, B. M., E. B. Mackay, S. Yasseri, I. D. Gunn, K. E. Waters, C. Andrews, S. Cole, M. De Ville, A. Kelly, S. Meis & A. L. Moore, 2016. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Research 97: 111–121.

    CAS  PubMed  Google Scholar 

  • State Water Resources Control Board, 2015. Statewide Mercury Program, Sacramento, CA. www.waterboards.ca.gov/water_issues/programs/mercury/.

  • Stepczuk, C., E. M. Owens, S. W. Effler, M. T. Auer & J. A. Bloomfield, 1998. A modeling analysis of THM precursors for a eutrophic reservoir. Lake and Reservoir Management 14(2–3): 367–378.

    CAS  Google Scholar 

  • Thamdrup, B., R. N. Glud & J. W. Hansen, 1994. Manganese oxidation and in situ manganese fluxes from a coastal sediment. Geochimica et Cosmochimica Acta 58(11): 2563–2570.

    CAS  Google Scholar 

  • Ullrich, S. M., T. W. Tanton & S. A. Abdrashitova, 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science & Technology 31: 241–293.

    CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA), 2001. Method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. EPA-821-R-01–020. Washington, D.C.

  • United States Environmental Protection Agency (USEPA), 2002. Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. EPA-821-R-02–019. Washington, D.C.

  • United States Environmental Protection Agency (USEPA), 2007. Method 7473: Mercury is solids and solutions by thermal decomposition, amalgamation and atomic absorption spectrometry. USEPA, Washington, D.C.

    Google Scholar 

  • Wang, J., S. Wang, X. Jin, S. Zhu & F. Wu, 2008. Ammonium release characteristics of the sediments from the shallow lakes in the middle and lower reaches of Yangtze River region, China. Environmental Geology 55(1): 37–45.

    CAS  Google Scholar 

  • Watras, C. J., 2009, Mercury pollution in remote freshwater lakes. In Likens, G. (eds), Encyclopedia of Inland Waters. Elsevier, New York: 100–109.

    Google Scholar 

  • Watras, C. J., K. A. Morrison & R. C. Back, 1996. Mass balance studies of mercury and methyl mercury in small temperate/boreal lakes of the northern hemisphere. In Baeyens, W., R. Ebinghaus & O. Vasiliev (eds), Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances. Kluwer Academic Publishers, Dordrecht: 329–358.

    Google Scholar 

  • Welch, E. B. & C. D. Cooke, 1995. Internal phosphorus loading in shallow lakes: importance and control. Lake and Reservoir Management 11(3): 273–281.

    Google Scholar 

  • Wijsman, J. W., J. J. Middelburg, P. M. Herman, M. E. Böttcher & C. H. Heip, 2001. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry 74(4): 261–278.

    CAS  Google Scholar 

  • Wilhelm, S. W., 1995. Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems. Aquatic Microbial Ecology 9(3): 295–303.

    Google Scholar 

  • Yin, H., J. Zhu & W. Tang, 2018. Management of nitrogen and phosphorus internal loading from polluted river sediment using Phoslock® and modified zeolite with intensive tubificid oligochaetes bioturbation. Chemical Engineering Journal 353: 46–55.

    CAS  Google Scholar 

  • Zak, D., A. Kleeberg & M. Hupfer, 2006. Sulphate-mediated phosphorus mobilization in riverine sediments at increasing sulphate concentration, River Spree, NE Germany. Biogeochemistry 80(2): 109–119.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the following for support during this project: Ms. Carrie Austin, Ms. Lauren Smitherman and staff at the California State Water Resources Control Board; Dr. Wesley Heim and staff at Moss Landing Marine Laboratories; Dr. Liying Zhao and staff at the U.C. Merced Environmental Analytical Laboratory; and Staff at the Santa Fe Irrigation District. We also thank the anonymous reviewers for their constructive comments on the manuscript. The views expressed herein are solely those of the authors and do not represent the official policies or positions of any supporting agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Beutel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Tom Jilbert, Raoul-Marie Couture, Brian J. Huser & Kalevi Salonen / Restoration of eutrophic lakes: current practices and future challenges

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 298 kb)

Supplementary file2 (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beutel, M., Fuhrmann, B., Herbon, G. et al. Cycling of methylmercury and other redox-sensitive compounds in the profundal zone of a hypereutrophic water supply reservoir. Hydrobiologia 847, 4425–4446 (2020). https://doi.org/10.1007/s10750-020-04192-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04192-3

Keywords

Navigation