Skip to main content

Advertisement

Log in

Infrared emission properties of a kind of natural carbonate: interpretation from mineralogical analysis

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In recent years, infrared radiation materials have received extensive attention. In this study, a kind of natural carbonate rock was highlighted and its radiation mechanism investigated, using a series of mineralogical and spectroscopy studies such as optical microscope, varying-temperature X-ray diffraction (XRD), Raman spectroscopy, X-ray fluorescence spectrometer (XRF), inductively coupled plasma mass spectrometry (ICP-MS), electron microprobe analysis (EMPA), thermogravimetry, differential thermal analysis (TG/DTA), environment scanning electron microscopy (ESEM) and infrared absorption and emission spectroscopy (IR). Results indicated that micro-nanoscale calcite (95%), graphite (3%) and pyrite (0.1%) were the primary components. Additionally, Sr2+ and Mg2+ were found to substitute Ca2+ in calcite, whose content could reach 0.145% and 0.152% (wt%), respectively. On the basis of blackbody radiation theory and the radiation energy spectrum of samples from 400 to 2000 cm−1, the average emissivity of this rock, pure calcite, pyrite and graphite was calculated as 1.007, 0.986, 0.899 and 0.488, respectively, in the temperature range of 50–140 °C. Notably, the radiation energy spectrum calculated emissivity and emission spectrum of calcite showed high consistency with the natural carbonate at all temperatures, indicating that the radiation performance of the rock was principally contributed to calcite. The heat capacity of three components presented a positive correlation with their infrared emissivity values within the temperature and wavelength of this study. The highest heat capacity of calcite benefited the enhancement of the whole thermal radiation performance of carbonate rock. The vibration of C–O bonds in the narrow absorption band of emission spectrum (1350–1500 cm−1) would lead to relatively high radiation energy and emissivity. In addition, the substitution of Mg2+ and Sr2+ for Ca2+ improved the infrared radiation characteristics due to the 6–8% enhancement of average emissivity for pure MgCO3 and SrCO3 compared to CaCO3. This study can provide theoretical reference for infrared radiation material, using abundant and cheap natural minerals on the Earth as a source of raw materials for infrared functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  • Allison N, Cohen I, Finch AA, Erez J (2011) Controls on Sr/Ca and Mg/Ca in scleractinian corals: the effects of Ca-ATPase and transcellular Ca channels on skeletal chemistry. Geochim Cosmochim Acta 75(21):6350–6360

    Google Scholar 

  • Ashley RP, Cunningham CG, Bostick NH, Dean WE, Chou IM (1991) Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou province, People’s Republic of China. Ore Geol Rev 6(2–3):133–151

    Google Scholar 

  • Bandfield JL, Hamilton VE, Christense PR (2000) A global view of Martian volcanic compositions. Science 287:1626–1630

    Google Scholar 

  • Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301(5636):1084–1087

    Google Scholar 

  • Bizovská V, Pálková H, Madejová J (2016) Near-infrared study of water adsorption on homo-ionic forms of montmorillonite. Clays Clay Miner 64(5):571–585

    Google Scholar 

  • Castaneda C, Eeckhout SG, Da CGM, Botelho NF, De GE (2006) Effect of heat treatment on tourmaline from Brazil. Phys Chem Miner 33(3):207–216

    Google Scholar 

  • Christensen PR, Harrison ST (1993) Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings on rocks. J Geophys Res Solid Earth 98(B11):19819–19834

    Google Scholar 

  • Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL, Stefanov WL (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res Planets 105(E4):9735–9739

    Google Scholar 

  • Chung J, Lee S (2014) Development of nanofibrous membranes with far-infrared radiation and their antimicrobial properties. Fibers Polym 15(6):1153–1159

    Google Scholar 

  • Clark BC (1993) Geochemical components in Martian soil. Geochim Cosmochim Acta 57(19):4575–4581

    Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Man Remote Sens 3(3–58):2–2

    Google Scholar 

  • Clayton RN, Mayeda TK (1988) Isotopic composition of carbonate in EETA79001 and its relation to parent body volatiles. Geochim Cosmochim Acta 52(4):925–927

    Google Scholar 

  • Coblentz WW (1906) Radimnetrie investigations of infrared absorption and reflection spectra. Natl Bur Stand (U.S.) Bull 2:457–462

    Google Scholar 

  • Conrado LAL, Munin E (2011) Reduction in body measurements after use of a garment made with synthetic fibers embedded with ceramic nanoparticles. J Cosmet Dermatol 10(1):30–35

    Google Scholar 

  • Das S, Bhar GC, Gangopadhyay S, Ghosh C (2003) Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications: revisited. Appl Opt 42(21):4335–4340

    Google Scholar 

  • Elderfield H, Chester R (1971) The Effect of periodicity on the infrared absorption frequency v4 of anhydrous normal carbonate minerals. Am Mineral J Earth Planet Mater 56(9–10):1600–1606

    Google Scholar 

  • Erenburg BG, Samoilov OY (1963) Structural parameters of calcite-type carbonates and the character of the MeO bond. J Struct Chem 4(6):799–801

    Google Scholar 

  • Farmer VC (1974) Infrared spectra of minerals. Mineralogical society, London

    Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Google Scholar 

  • Frost RL, Palmer SJ (2011) Infrared and infrared emission spectroscopy of nesquehonite Mg (OH)(HCO3)·2H2O—implications for the formula of nesquehonite. Spectrochim Acta Part A Mol Biomol Spectrosc 78(4):1255–1260

    Google Scholar 

  • Frost RL, Bahfenne S, Graham J (2008a) Infrared and infrared emission spectroscopic study of selected magnesium carbonate minerals containing ferric iron—implications for the geosequestration of greenhouse gases. Spectrochim Acta Part A Mol Biomol Spectrosc 71(4):1610–1616

    Google Scholar 

  • Frost RL, Martens WN, Wain DL, Hales MC (2008b) Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. Spectrochim Acta Part A Mol Biomol Spectrosc 70(5):1120–1126

    Google Scholar 

  • Grønvold F, Westrum EF (1976) Heat capacities of iron disulfides THERMODYNAMICS of marcasite from 5 to 700 K, pyrite from 300 to 780 K, and the transformation of marcasite to pyrite. J Chem Thermodyn 8(11):1039–1048

    Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37(9):892–899

    Google Scholar 

  • Hamilton VE, Christensen PR, McSween JHY (1997) Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy. J Geophys Res Planets 102(E11):25593–25603

    Google Scholar 

  • Hapke B (1996) A model of radiative and conductive energy transfer in planetary regoliths. J Geophys Res Planets 101(E7):16817–16831

    Google Scholar 

  • Hodkin DJ, Stewart DI, Graham JT, Cibin G, Burke IT (2018) Enhanced crystallographic incorporation of strontium (II) ions into calcite via preferential adsorption at obtuse growth steps. Cryst Growth Des 18(5):2836–2843

    Google Scholar 

  • Hook SJ, Gabell AR, Green AA, Kealy PS (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens Environ 42(2):123–135

    Google Scholar 

  • Huang D, Zhou J, Cao H, Dai Y, Chen W (2011) Effects of TiO2 doping Fe–Mn–Cu–Co spinel on the physical properties of diesel oil. IOP Conf Ser Mater Sci Eng 18(20):1–4

    Google Scholar 

  • Inoue S, Takemoto M, Chishaki A, Ide T, Nishizaka M, Miyazono M (2012) Leg heating using far infra-red radiation in patients with chronic heart failure acutely improves the hemodynamics, vascular endothelial function, and oxidative stress. Intern Med 51(17):2263–2270

    Google Scholar 

  • Jacobs GK, Kerrick DM, Krupka KM (1981) The high-temperature heat capacity of natural calcite (CaCO3). Phys Chem Miner 7(2):55–59

    Google Scholar 

  • Jaworske DA (1993) Thermal modeling of a calorimetric technique for measuring the emittance of surfaces and coatings. Thin Solid Films 236(1–2):146–152

    Google Scholar 

  • Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J (2016) Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front Neurosci 9:1–15

    Google Scholar 

  • Julien CM, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ion 159:345–356

    Google Scholar 

  • Kahle AB, Goetz AFH (1983) Minerologic information from a new airborne thermal infrared multispectral scanner. Science 222:24–27

    Google Scholar 

  • Kawano J, Maeda S, Nagai T (2016) The effect of Mg2+ incorporation on the structure of calcium carbonate clusters: investigation by the anharmonic downward distortion following method. Phys Chem Chem Phys 18(4):2690–2698

    Google Scholar 

  • Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, Tei C (2002) Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol 39(5):754–759

    Google Scholar 

  • King PL, Ramsey MS, McMillan PF, Swayze G (2004) Laboratory Fourier transform infrared spectroscopy methods for geologic samples. Infrared Spectrosc Geochem Explor Remote Sens 33:57–91

    Google Scholar 

  • Klein C, Hurlbut CS Jr (1977) Manual of mineralogy. John Wiley, New York

    Google Scholar 

  • Kloprogge JT, Mahmutagic E, Frost RL (2006) Mid-infrared and infrared emission spectroscopy of Cu-exchanged montmorillonite. J Colloid Interface Sci 296(2):640–646

    Google Scholar 

  • Kraft MD, Michalski JR, Sharp TG (2003) Effects of pure silica coatings on thermal emission spectra of basaltic rocks: considerations for Martian surface mineralogy. Geophys Res Lett 30(24):1–4

    Google Scholar 

  • Lane MD, Christensen PR (1997) Thermal infrared emission spectroscopy of anhydrous carbonates. J Geophys Res Planets 102(E11):25581–25592

    Google Scholar 

  • Lazarev AN (1972) Vibrational spectra and structure of silicates. Springer, New York

    Google Scholar 

  • Liu J, Meng J, Liang J, Duan X, Huo X, Tang Q (2015) Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics. Mater Res Bull 66:26–31

    Google Scholar 

  • Lupei V, Lupei A, Gheorghe C, Ikesue A, Osiac E (2009) Energy transfer-driven infrared emission processes in rare earth-doped Sc2O3 ceramics. J Lumin 129(12):1862–1865

    Google Scholar 

  • Lutz HD, Zwinscher J (1996) Lattice dynamics of pyrite FeS2—polarizable-ion model. Phys Chem Miner 23(8):497–502

    Google Scholar 

  • Lyon RJP (1964) Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils, II, rough and powdered surfaces NASA contract rep CR-100

  • Lyon RJP (1965) Analysis of rocks by spectral infrared emission (8 to 25 microns). Econ Geol 60(4):715–736

    Google Scholar 

  • Makarounis O (1967) Heat capacity by the radiant energy absorption technique. Thermophys Spec Conf 67(303):17–20

    Google Scholar 

  • Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N (1995) Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr Sect B Struct Sci 51(6):929–939

    Google Scholar 

  • McLennan SM (2003) Sedimentary silica on Mars. Geology 31:315–318

    Google Scholar 

  • Michalski JR, Kraft MD, Diedrich T, Sharp TG, Christensen PR (2003) Thermal emission spectroscopy of the silica polymorphs and considerations for remote sensing of Mars. Geophys Res Lett 30(19):1–4

    Google Scholar 

  • Michalski JR, Kraft MD, Sharp TG, Williams LB, Christensen PR (2005) Mineralogical constraints on the high-silica Martian surface component observed by TES. Icarus 174(1):161–177

    Google Scholar 

  • Michalski JR, Kraft MD, Sharp TG, Williams LB, Christensen PR (2006) Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from thermal emission spectrometer data. J Geophys Res Planets 111(E3):1–14

    Google Scholar 

  • Moenke HHW (1974) Vibrational spectra and the crystal-chemical classification of minerals. The infrared spectra of minerals, edited by: farmer VC. Mineral Soc Monogr 4:111–118

    Google Scholar 

  • Naebe M, Shirvanimoghaddam K (2016) Functionally graded materials: a review of fabrication and properties. Appl Mater Today 5:223–245

    Google Scholar 

  • Pollack JB, Roush T, Witteborn F, Bregman J, Wooden D, Stoker C, Freedman R (1990) Thermal emission spectra of Mars (5.4–10.5 μm): evidence for sulfates, carbonates, and hydrates. J Geophys Res Solid Earth 95(B9):14595–14627

    Google Scholar 

  • Polyakov VB, Kharlashina NN (1995) The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond, and carbon dioxide: a new approach. Geochim Cosmochim Acta 59(12):2561–2572

    Google Scholar 

  • Rivkin AS, Volquardsen E, Clark BE (2006) The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185(2):563–567

    Google Scholar 

  • Ruff SW, Christensen PR, Barbera PW, Anderson DL (1997) Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J Geophys Res Solid Earth 102(B7):14899–14913

    Google Scholar 

  • Salisbury JW, D'Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42(2):83–106

    Google Scholar 

  • Salisbury JW, Walter LS (1989) Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J Geophys Res Solid Earth 94(B7):9192–9202

    Google Scholar 

  • Sourisseau C, Cavagnat R, Fouassier M (1991) The vibrational properties and valence force fields of FeS2, RuS2 pyrites and FeS2 marcasite. J Phys Chem Solids 52(3):537–544

    Google Scholar 

  • Treiman AH, Barrett RA, Gooding JL (1993) Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics 28(1):86–97

    Google Scholar 

  • Tsai SR, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B 170:197–207

    Google Scholar 

  • Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Google Scholar 

  • Utyuzh A (2014) Influence of temperature on Raman spectra of the FeS single crystal with pyrite structure. Phys Solid State 56(10):2050–2055

    Google Scholar 

  • Verble JL, Wallis RF (1969) Infrared studies of lattice vibrations in iron pyrite. Phys Rev 182(3):783–789

    Google Scholar 

  • Wang SM (2010) Effects of Fe on crystallization and properties of a new high infrared radiance glass-ceramics. Environ Sci Technol 44(12):4816–4820

    Google Scholar 

  • Wang F, Liang J, Tang Q, Li L, Han L (2010) Preparation and far infrared emission properties of natural sepiolite nanofibers. J Nanosci Nanotechnol 10(3):2017–2022

    Google Scholar 

  • Wang SM, Kuang FH, Yan QZ, Ge CC, Qi LH (2011) Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics. J Alloy Compd 509(6):2819–2823

    Google Scholar 

  • Weir CE, Lippincott ER (1961) Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. J Res Natl Bur Stand A 65(3):173–183

    Google Scholar 

  • Wenrich ML, Christensen PR (1996) Optical constants of minerals derived from emission spectroscopy: application to quartz. J Geophys Res Solid Earth 101(B7):15921–15931

    Google Scholar 

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Lewis Mineralogical Society, London

    Google Scholar 

  • Xie XD, Wang FY, Sun ZY, Xie NZ, Wang Y, Lao PL (2008) Petrological and mineralogical study of Sibin bian-stone I: relations between its petrochemical and petrotextural features and its IR emission ability. Bull Mineral Petrol Geochem 27(1):1–5

    Google Scholar 

  • Xie XD, Wang FY, Sun ZY, Lao PL, Kong KC, Xie NZ (2011) Petrological and mineralogical studies of the Sibin bian-stone, a material for making acupuncture tools in ancient China. Springer, Berlin

    Google Scholar 

  • Yan SS (2010) Solid state physics. Higher Education Publishing House, Beijing

    Google Scholar 

  • Yu P, Kirkpatrick RJ, Poe B, Mcmillan PF, Cong X (1999) Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc 82(3):742–748

    Google Scholar 

  • Zhang Y, Wen D (2012) Infrared emission properties of RE (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) and Mn co-doped Co0.6Zn0.4Fe2O4 ferrites. Mater Chem Phys 131(3):575–580

    Google Scholar 

  • Zhang K, Guo B, Colarusso P, Bernath PF (1996) Far-infrared emission spectra of selected gas-phase PAHs: spectroscopic fingerprints. Science 274(5287):582–583

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (Grant No. 91851208, 41820104003, 41230103 and 41522201), the National Key Basic Research Program of China (973 Program, Grant No. 2014CB846001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongrui Ding or Anhuai Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, Y., Ding, H. et al. Infrared emission properties of a kind of natural carbonate: interpretation from mineralogical analysis. Phys Chem Minerals 47, 16 (2020). https://doi.org/10.1007/s00269-020-01082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01082-x

Keywords

Navigation