Skip to main content
Log in

Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Glutamine (Gln) is an efficient nitrogen source in promoting aboveground nitrogen and biomass accumulation in ZD958 (an elite maize hybrid with great potential for further genetic improvement) seedlings when conditioning a smaller but adequate root system.

Abstract

Amino acids account for a significant part of nitrogen (N) resources in the soil. However, how amino acid-N affects crop growth remains to be further investigated. Here, glutamine (Gln) application (80% NH4NO3 + 20% Gln; mixed N) enhanced shoot growth of the maize hybrid ZD958. N concentration in the shoot increased, which is associated with favorable increases in SPAD values, GS/GOGAT activities, and accumulation of glutamate, asparagine, total free amino acids and soluble proteins in the shoot under mixed N. On the other hand, root growth was reduced when exposed to Gln as indicated by the significantly lower dry weight, root/shoot ratio, and primary, seminal, crown, and total root lengths, as well as unfavorable physiological alterations. Up-regulation of expression of ZmAMT1.3, ZmNRT2.1, and ZmAAP2 in the root and that of ZmAMT1.1, ZmAMT1.3, and ZmLHT1 in the shoot preconditioned N over-accumulation in the shoot and facilitated shoot growth, presumably via enhancing N translocation to the shoot, when Gln was supplied. Together, Gln is an efficient N source in promoting aboveground N and biomass accumulation in ZD958 seedlings when conditioning a smaller but adequate root system. Notably, ZD958′s parental lines Z58 and Chang7-2 displayed a wide range of variations in Gln responses, which may be partially attributed to single nucleotide polymorphisms (SNPs) in cis-elements and coding regions revealed in this study and much larger quantities of unidentified genetic variations between Z58 and Chang7-2. Extensive genetic divergence of these two elite inbred lines implied large potentials for further genetic improvement of ZD958 in relation to organic N use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAP:

Amino acid permease

AMT:

Ammonium transporter

Gln:

Glutamine

GOGAT:

Glutamate synthase/glutamine-2-oxoglutarate aminotransferase

GS:

Glutamine synthetase

LHT:

Lysine and histidine transporter

NR:

Nitrate reductase

NRT:

Nitrate transporter

SNP:

Single nucleotide polymorphism

References

  • Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol 108:433–441

    Article  CAS  Google Scholar 

  • Arshad M, Hussain A, Shakoor A (1995) Effect of soil applied L-tryptophan on growth and chemical composition of cotton. J Plant Nutr 18(2):317–329

    Article  CAS  Google Scholar 

  • Aslam M, Travis RL, Rains DW (2001) Differential effect of aminoacids on nitrate uptake and reduction systems in barley roots. Plant Sci 160:219–228

    Article  CAS  PubMed  Google Scholar 

  • Baker W, Thompson T (1992) Determination of total nitrogen in plant samples by Kjeldahl. In: Plank CO (ed) Plant analysis reference procedures for the southern region of the United States, vol 368. The Georgia Agricultural Experiment, Athens, pp 13–16

    Google Scholar 

  • Bao A, Zhao Z, Ding G, Shi L, Xu F, Cai H (2015) The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. Int J Mol Sci 16(6):12713–12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barazani O, Friedman J (2000) Effect of exogenously applied L-tryptophan on allelochemical activity of plant-growth-promoting rhizobacteria (PGPR). J Chem Ecol 26:343–349

    Article  CAS  Google Scholar 

  • Bishopp A, Lynch JP (2015) The hidden half of crop yields. Nat Plants 1:15117

    Article  PubMed  Google Scholar 

  • Bollard EG (1966) A comparative study of the ability of organic nitrogenous compounds to serve as sole nitrogen sources of nitrogen for the growth of plants. Plant Soil 25:153–166

    Article  CAS  Google Scholar 

  • Bosch L, Alegría A, Farré R (2006) Application of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J Chromatogr B 831:176–183

    Article  CAS  Google Scholar 

  • Brackin R, Näsholm T, Robinson N, Guillou S, Vinall K, Lakshmanan P, Schmidt S, Inselsbacher E (2015) Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity. Sci Rep 5:15727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, Nasholm T (2011) Patterns of plant biomass partitioning depend on nitrogen source. PLoS ONE 6(4):e19211. https://doi.org/10.1371/journal.pone.0019211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cañas RA, Quillere I, Christ A, Hirel B (2009) Nitrogen metabolism in the developing ear of maize (Zea mays): analysis of two lines contrasting in their mode of nitrogen management. New Phytol 184:340–352

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Ma Q, Zhong C, Yang X, Zhu L, Zhang J et al (2016) Elevational variation in soil amino acid and inorganic nitrogen concentrations in Taibai mountain, China. PLoS ONE 11(6):e0157979. https://doi.org/10.1371/journal.pone.0157979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant-tissue by nitration a salicylic-acid. Commun Soil Sci Plan 6:71–80

    Article  CAS  Google Scholar 

  • Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26:640–646

    Article  CAS  PubMed  Google Scholar 

  • Chen ZC, Peng WT, Li J, Liao H (2018) Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol 74:142–152

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Hermon P, Hantke S et al (2003) Duplicated fie genes in maize expression pattern and imprinting suggest distinct functions. Plant Cell 15:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchen P, Michael LA, Jonathan R, Nicolas S, Daniele S (2019) On the effect of asymmetrical trait inheritance on models of trait evolution. https://doi.org/10.1101/768820

    Article  Google Scholar 

  • Duvick DN (1930s) Biotechnology in the 1930s: The development of hybrid maize. Nat Rev Genet 2:69–74

    Article  CAS  PubMed  Google Scholar 

  • Forsum O, Svennerstam H, Ganeteg U, Nasholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179:1058–1069

    CAS  PubMed  Google Scholar 

  • Frankenberger WTJ, Chang AC, Arshad M (1990) Response of Raphanus sativus to the auxin precursor, l-tryptophan applied to soil. Plant Soil 129:235–241

    Article  CAS  Google Scholar 

  • Franklin O, Cambui CA, Gruffman L, Palmroth S, Oren R, Näsholm T (2017) The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant Cell Environ 40:25–35

    Article  CAS  PubMed  Google Scholar 

  • Freixes S, Thibaud M, Tardieu F, Muller B (2002) Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant Cell Environ 25:1357–1366

    Article  CAS  Google Scholar 

  • Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, Boughton B, Bacic A, Shirley N, Rafalski A, Dhugga K, Tester M, Kaiser BN (2013) The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytol 198:82–94

    Article  CAS  PubMed  Google Scholar 

  • Gioseffi E, de Neergaard A, Schjoerring JK (2012) Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences 9:1509–1518

    Article  CAS  Google Scholar 

  • Groat RG, Vance CP (1981) Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.) developmental patterns and response to applied nitrogen. Plant Physiol 67:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA et al (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:446–450

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Costa LM, Biderre-Petit C et al (2004) maternally expressed gene1 is a novel maize endosperm transfer cell–specific gene with a maternal parent of origin pattern of expression. Plant Cell 16:1288–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Wang L, Zheng H, Pan X, Li H, Chen F, Li X (2015) ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta 242:935–949

    Article  CAS  PubMed  Google Scholar 

  • Henry HAL, Jefferies RL (2003) Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. J Ecol 91:627–636

    Article  CAS  Google Scholar 

  • Ho C, Lin S, Hu H, Tsay Y (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP, Hochholdinger F (2008) Comparison of maize (Zea mays L) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics 179(3):1275–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber SC, Moreland DE (1981) Co-transport of potassium and sugars across the plasmalemma of mesophyll protoplasts. Plant Physiol 67:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jämtgård S, Näsholm T, Huss-Danell K (2008) Characteristics of amino acid uptake in barley. Plant Soil 302:221–231

    Article  CAS  Google Scholar 

  • Jämtgård S, Näsholm T, Huss-Danell K (2010) Nitrogen compounds in soil solutions of agricultural land. Soil Biol Biochem 42:2325–2330

    Article  CAS  Google Scholar 

  • Jones DL, Kielland K (2001) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209–219

    Article  Google Scholar 

  • Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6872–6877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kiran K, Ansari SA, Srivastava R, Lodhi N, Chaturvedi CP, Sawant SV, Tuli R (2006) The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant Physiol 142(1):364–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Loque D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S et al (2006) Additive contribution of AMT1.1 and AMT1.3 to high-affinity ammonium uptake across the plasma membrane of nitrogen deficient Arabidopsis roots. Plant J 48:522–534

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  CAS  PubMed  Google Scholar 

  • Mackay AD, Barber SA (1986) Effect of nitrogen on root growth of two corn genotypes in the field. Agron J 77:699–703

    Article  Google Scholar 

  • Masclaux-Daubresse C, Daniel VF, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Madison, WI, pp 99–118. https://doi.org/10.2134/1999.geneticsandexploitation.c10

    Chapter  Google Scholar 

  • Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campíns-Falcó P (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. Trends Anal Chem 25:282–290

    Article  CAS  Google Scholar 

  • Muller B, Stosser M, Tardieu F (1998) Spatial distributions of tissue expansion and cell division rates are related to irradiance and to sugar content in the growing zone of maize roots. Plant Cell Environ 21:149–158

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  CAS  PubMed  Google Scholar 

  • Ning P, Liao C, Li S, Yu P, Zhang Y, Li X, Li C (2012) Maize cob plus husks mimics the grain sink to stimulate nutrient uptake by roots. Field Crops Res 130:38–45

    Article  Google Scholar 

  • Nordin A, Hogberg P, Näsholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132

    Article  PubMed  Google Scholar 

  • O’Neal D, Joy KD (1973) Glutamine synthetase of pea leaves I Purification, stabilisation and pH optima. Arch Biochem Biophys 159:113–122

  • Öhlund J, Näsholm T (2004) Regulation of organic and inorganic nitrogen uptake in scots pine (Pinus sylvestris) seedlings. Tree Physiol 24:1397–1402

    Article  PubMed  Google Scholar 

  • Pan XY, Md MH, Yanqiang L, Cheng SL, Hongyan Z, Renyi L, Li X (2015) Asymmetric transcriptomic signatures between the cob and florets in the maize ear under optimal and low nitrogen conditions at silking, and functional characterization of amino acid transporters ZmAAP4 and ZmVAAT3. J Exp Bot 66(20):6149–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelissier HC, Frerich A, Desimone M, Schumacher K, Tegeder M (2004) PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiol 134:664–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piwpuan N, Zhai X, Brix H (2013) Nitrogen nutrition of Cyperus laevigatus and Phormium tenax, effects of ammonium versus nitrate on growth, nitrate reductase activity and N uptake kinetics. Aquat Bot 106:42–51

    Article  CAS  Google Scholar 

  • Prinsi B, Espen L (2015) Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BMC Plant Biol 15:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the cyperaceae: plant soil processes. Ecology 80:2408–2419

    Article  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–80

    Article  CAS  PubMed  Google Scholar 

  • Souri MK, Sooraki FY, Moghadamyar M (2017) Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Hortic Environ Biotechnol 58:530–536

    Article  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Statistix software 8.1, 2005 Analytical software Tallahassee Florida, USA

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegeder M, Hammes UZ (2018) The way out and. In: phloem loading and unloading of amino acids. Curr Opin Plant Biol 43:16–21.

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    Article  CAS  PubMed  Google Scholar 

  • Thornton B (2004) Inhibition of nitrate influx by glutamine in Lolium perenne depends upon the contribution of the HATS to the total influx. J Exp Bot 55:761–769

    Article  CAS  PubMed  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass AD (2000) Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol 123:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinall K, Schmidt S, Brackin R, Lakshmanan P, Robinson N (2012) Amino acids are a nitrogen source for sugarcane. Funct Plant Biol 39:503

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Studer AJ, Zhao Q, Meeley R, Doebley JF (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics 200:965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie CX, Zhang SH, Li MS, Li XH, Hao ZF, Bai L, Zhang DG, Liang YH (2007) Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines. J Genet Genomics 34:738–748

    Article  PubMed  Google Scholar 

  • Xiong Y, Wenbin M, Eun-Deok K, Krishanu M, Hatem H, Willia BB, Sibum S, Bryan K, Byung-Ho K (2014) Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members. BMC Plant Biol 14:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Shang A, Peng Y, Yu P, Li C (2011) Covering middle leaves and ears reveals differential regulatory roles of vegetative and reproductive organs in root growth and nitrogen uptake in maize. Crop Sci 51(2):65–272

    Article  Google Scholar 

  • Zerihun A, McKenzie BA, Morton JD (1998) Photosynthate costs associated with the utilization of different nitrogen forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol 138:1–11

    Article  CAS  Google Scholar 

  • Zhang H, Hou J, Jiang P, Qi S, Xu C, He Q, Ding Z, Wang Z, Zhang K, Li K (2016) Identification of a 467 bp promoter of maize phosphatidylinositol synthase gene (ZmPIS) which confers high-level gene expression and salinity or osmotic stress inducibility in transgenic tobacco. Front Plant Sci 7:42

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y et al (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31(6):1289–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFD0200103), National Science Foundation of China (31972491), and the program for New Century Excellent Talents in University (NCET-12–0521).

Author information

Authors and Affiliations

Authors

Contributions

XL, MH, and FC conceived and designed the experiments. MH and MM performed the experiments. XL, MH, RW, JG, and FC analyzed the data. XL and MH wrote the manuscript. All authors have reviewed and approved the final manuscript.

Corresponding author

Correspondence to Xuexian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table S1 Similar traits between maize hybrid ZD958 and parental lines Z58 and Chang7-2 grown under 2 mM NH4NO3 (CK) and 1.6 mM NH4NO3 plus 0.4 mM Gln (Mixed N)

Supplementary Table S2 The primers for quantitative real time PCR

Supplementary Table S3 Number of SNPs in the promoter region and gene body of six genes between Z58 and Chang7-2

Supplementary Fig. S1 Seedlings and root systems of maize hybrid ZD958 grown under 2 mM NH4NO3 (CK) and 1.6 mM NH4NO3 plus 0.4 mM Gln (Mixed N). a Plants grown under CK and Mixed N. Scale bar = 10 cm. b Scanned images of roots.

Supplementary Fig. S2 Seedlings and root systems of parental lines (Z58 and Chang7-2) grown under 2 mM NH4NO3 (CK) and 1.6 mM NH4NO3 plus 0.4 mM Gln (Mixed N). a Plants grown under CK and Mixed N. Scale bar = 10 cm. b Scanned images of Z58 roots. c Scanned images of Chang7-2 roots .

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2877 kb)

Supplementary file2 (XLS 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.U., Islam, M.M., Wang, R. et al. Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta 251, 66 (2020). https://doi.org/10.1007/s00425-020-03363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03363-9

Keywords

Navigation