Skip to main content

Advertisement

Log in

Founder cells for hepatocytes during liver regeneration: from identification to application

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Liver regeneration (LR) capacity in vertebrates developed through natural selection over a hundred million years of evolution. To maintain homeostasis or recover from various injuries, liver cells must regenerate; this process includes the renewal of parenchymal and nonparenchymal cells as well as the formation of liver structures. The cellular origin of newly grown tissue is one of the critical questions in this area and has been a subject of prolonged debate. The regenerative tissue may derive from either hepatocyte self-duplication or liver stem/progenitor cells (LSPCs). Recently, hepatocyte subpopulations and cholangiocytes were also described as important founder cells. The niche that triggers the proliferation of hepatocytes and the differentiation of LSPCs has been extensively studied. Meanwhile, in vitro culture systems for liver founder cells and organoids have been developed rapidly for mechanistic studies and potential therapeutic purposes. This review summarizes the cellular sources and niches that give rise to renewed hepatocytes during LR, and it also describes in vitro culture studies of those founder cells for future applications, as well as current reports for stem cell-based therapies for liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Higgins GM, Anderson RM (1931) Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  2. Tag CG, Sauer-Lehnen S, Weiskirchen S, Borkham-Kamphorst E, Tolba RH, Tacke F, Weiskirchen R (2015) Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp. https://doi.org/10.3791/52438

    Article  PubMed  PubMed Central  Google Scholar 

  3. Delire B, Starkel P, Leclercq I (2015) Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J Clin Transl Hepatol 3(1):53–66. https://doi.org/10.14218/JCTH.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  4. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S (2011) Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43(1):34–41

    Article  CAS  PubMed  Google Scholar 

  5. Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J, Kay MA, Grimm D, Willenbring H (2011) Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121(12):4850–4860. https://doi.org/10.1172/JCI59261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494(7436):247–250. https://doi.org/10.1038/nature11826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, Pikarsky E, Stanger BZ (2014) Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15(3):340–349. https://doi.org/10.1016/j.stem.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, Taniguchi K, Nakagawa H, Valasek MA, Ye L, Kopp JL, Sander M, Carter H, Deisseroth K, Verma IM, Karin M (2015) Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162(4):766–779. https://doi.org/10.1016/j.cell.2015.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin S, Nascimento EM, Gajera CR, Chen L, Neuhofer P, Garbuzov A, Wang S, Artandi SE (2018) Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556(7700):244–248. https://doi.org/10.1038/s41586-018-0004-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. https://doi.org/10.1038/5007

    Article  CAS  PubMed  Google Scholar 

  11. Van Hul NK, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA (2009) Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology 49(5):1625–1635. https://doi.org/10.1002/hep.22820

    Article  CAS  PubMed  Google Scholar 

  12. Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, Jacquemin P, Lemaigre F, Leclercq IA (2012) Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143(6):1564–1575. https://doi.org/10.1053/j.gastro.2012.08.024

    Article  PubMed  Google Scholar 

  13. Rodrigo-Torres D, Affo S, Coll M, Morales-Ibanez O, Millan C, Blaya D, Alvarez-Guaita A, Rentero C, Lozano JJ, Maestro MA, Solar M, Arroyo V, Caballeria J, van Grunsven LA, Enrich C, Gines P, Bataller R, Sancho-Bru P (2014) The biliary epithelium gives rise to liver progenitor cells. Hepatology 60(4):1367–1377. https://doi.org/10.1002/hep.27078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaub JR, Malato Y, Gormond C, Willenbring H (2014) Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep 8(4):933–939. https://doi.org/10.1016/j.celrep.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, Guest RV, Wojtacha D, Man TY, Mackinnon A, Ridgway RA, Kendall T, Williams MJ, Jamieson T, Raven A, Hay DC, Iredale JP, Clarke AR, Sansom OJ, Forbes SJ (2015) Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 17(8):971–983. https://doi.org/10.1038/ncb3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarlow BD, Finegold MJ, Grompe M (2014) Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 60(1):278–289. https://doi.org/10.1002/hep.27084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, Zhang L, Liu Q, Li Y, Li Y, Zhao H, Liu K, Lu J, Zhou Y, Huang P, Nie Y, Yan Y, Hui L, Lui KO, Zhou B (2016) Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun 7:13369. https://doi.org/10.1038/ncomms13369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O'Duibhir E, Dwyer BJ, Thomson JP, Meehan RR, Bogorad R, Koteliansky V, Kotelevtsev Y, Ffrench-Constant C, Boulter L, Forbes SJ (2017) Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547(7663):350–354. https://doi.org/10.1038/nature23015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deng X, Zhang X, Li W, Feng RX, Li L, Yi GR, Zhang XN, Yin C, Yu HY, Zhang JP, Lu B, Hui L, Xie WF (2018) Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23(1):114–122. https://doi.org/10.1016/j.stem.2018.05.022

    Article  CAS  PubMed  Google Scholar 

  20. Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM (2007) A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells 25(10):2419–2429. https://doi.org/10.1634/stemcells.2007-0176

    Article  CAS  PubMed  Google Scholar 

  21. Stock P, Bruckner S, Winkler S, Dollinger MM, Christ B (2014) Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. Int J Mol Sci 15(4):7004–7028. https://doi.org/10.3390/ijms15047004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, Fiel MI, Goossens N, Chou HI, Hoshida Y, Friedman SL (2018) A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol 69(2):385–395. https://doi.org/10.1016/j.jhep.2018.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chien CS, Chen YH, Chen HL, Wang CP, Wu SH, Ho SL, Huang WC, Yu CH, Chang MH (2018) Cells responsible for liver mass regeneration in rats with 2-acetylaminofluorene/partial hepatectomy injury. J Biomed Sci 25(1):39. https://doi.org/10.1186/s12929-018-0441-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paku S, Nagy P, Kopper L, Thorgeirsson SS (2004) 2-acetylaminofluorene dose-dependent differentiation of rat oval cells into hepatocytes: confocal and electron microscopic studies. Hepatology 39(5):1353–1361. https://doi.org/10.1002/hep.20178

    Article  CAS  PubMed  Google Scholar 

  25. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. https://doi.org/10.1038/nature06196

    Article  CAS  PubMed  Google Scholar 

  26. Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K, Miyajima A (2009) Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136(11):1951–1960. https://doi.org/10.1242/dev.031369

    Article  CAS  PubMed  Google Scholar 

  27. Kordes C, Sawitza I, Gotze S, Herebian D, Haussinger D (2014) Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest 124(12):5503–5515. https://doi.org/10.1172/JCI74119

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li F, Liu P, Liu C, Xiang D, Deng L, Li W, Wangensteen K, Song J, Ma Y, Hui L, Wei L, Li L, Ding X, Hu Y, He Z, Wang X (2010) Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Gastroenterology 139(6):2158–2169. https://doi.org/10.1053/j.gastro.2010.08.042

    Article  CAS  PubMed  Google Scholar 

  29. Qiu Q, Hernandez JC, Dean AM, Rao PH, Darlington GJ (2011) CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells Dev 20(12):2177–2188. https://doi.org/10.1089/scd.2010.0352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bralet MP, Branchereau S, Brechot C, Ferry N (1994) Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol 144(5):896–905

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. https://doi.org/10.1002/dvg.20335

    Article  CAS  Google Scholar 

  33. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in "knock-in" Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37(1):43–53. https://doi.org/10.1002/eji.200636745

    Article  CAS  PubMed  Google Scholar 

  34. He J, Chen J, Wei X, Leng H, Mu H, Cai P, Luo L (2019) mTORC1 signaling is required for the dedifferentiation from biliary cell to Bi-potential progenitor cell in Zebrafish liver regeneration. Hepatology. https://doi.org/10.1002/hep.30790

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69(3):708–764. https://doi.org/10.1152/physrev.1989.69.3.708

    Article  CAS  PubMed  Google Scholar 

  36. Wang B, Zhao L, Fish M, Logan CY, Nusse R (2015) Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 524(7564):180–185. https://doi.org/10.1038/nature14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, Xie Y, Roma G, Donovan A, Marti P, Beckmann N, Dill MT, Carbone W, Bergling S, Isken A, Mueller M, Kinzel B, Yang Y, Mao X, Nicholson TB, Zamponi R, Capodieci P, Valdez R, Rivera D, Loew A, Ukomadu C, Terracciano LM, Bouwmeester T, Cong F, Heim MH, Forbes SJ, Ruffner H, Tchorz JS (2016) The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 18(5):467–479. https://doi.org/10.1038/ncb3337

    Article  CAS  PubMed  Google Scholar 

  38. Tanami S, Ben-Moshe S, Elkayam A, Mayo A, Bahar Halpern K, Itzkovitz S (2017) Dynamic zonation of liver polyploidy. Cell Tissue Res 368(2):405–410. https://doi.org/10.1007/s00441-016-2427-5

    Article  CAS  PubMed  Google Scholar 

  39. Wilkinson PD, Delgado ER, Alencastro F, Leek MP, Roy N, Weirich MP, Stahl EC, Otero PA, Chen MI, Brown WK, Duncan AW (2018) The polyploid state restricts hepatocyte proliferation and liver regeneration. Hepatology. https://doi.org/10.1002/hep.30286

    Article  Google Scholar 

  40. Farber E (1956) Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene. Cancer Res 16(2):142–148

    CAS  PubMed  Google Scholar 

  41. Popper H, Kent G, Stein R (1957) Ductular cell reaction in the liver in hepatic injury. J Mt Sinai Hosp N Y 24(5):551–556

    CAS  PubMed  Google Scholar 

  42. Factor VM, Radaeva SA, Thorgeirsson SS (1994) Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol 145(2):409–422

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS (1999) Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Invest 79(2):103–109

    CAS  PubMed  Google Scholar 

  44. Yovchev MI, Grozdanov PN, Joseph B, Gupta S, Dabeva MD (2007) Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology 45(1):139–149. https://doi.org/10.1002/hep.21448

    Article  CAS  PubMed  Google Scholar 

  45. Cao W, Chen K, Bolkestein M, Yin Y, Verstegen MMA, Bijvelds MJC, Wang W, Tuysuz N, Ten Berge D, Sprengers D, Metselaar HJ, van der Laan LJW, Kwekkeboom J, Smits R, Peppelenbosch MP, Pan Q (2017) Dynamics of proliferative and quiescent stem cells in liver homeostasis and injury. Gastroenterology 153(4):1133–1147. https://doi.org/10.1053/j.gastro.2017.07.006

    Article  PubMed  Google Scholar 

  46. Sackett SD, Li Z, Hurtt R, Gao Y, Wells RG, Brondell K, Kaestner KH, Greenbaum LE (2009) Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology 49(3):920–929. https://doi.org/10.1002/hep.22705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yovchev MI, Locker J, Oertel M (2016) Biliary fibrosis drives liver repopulation and phenotype transition of transplanted hepatocytes. J Hepatol 64(6):1348–1357. https://doi.org/10.1016/j.jhep.2016.01.036

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuhlmann WD, Peschke P (2006) Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol 87(5):343–359. https://doi.org/10.1111/j.1365-2613.2006.00485.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madsen AC, Rikkers LF, Moody FG, Wu JT (1980) Alpha-fetoprotein as a marker for hepatic regeneration in the dog. J Surg Res 28(1):71–76

    Article  CAS  PubMed  Google Scholar 

  50. Jensen CH, Jauho EI, Santoni-Rugiu E, Holmskov U, Teisner B, Tygstrup N, Bisgaard HC (2004) Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. Am J Pathol 164(4):1347–1359. https://doi.org/10.1016/S0002-9440(10)63221-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Passman AM, Strauss RP, McSpadden SB, Finch-Edmondson ML, Woo KH, Diepeveen LA, London R, Callus BA, Yeoh GC (2015) A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice. Dis Model Mech 8(12):1635–1641. https://doi.org/10.1242/dmm.022020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi TY, Ninov N, Stainier DY, Shin D (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146(3):776–788. https://doi.org/10.1053/j.gastro.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  53. Yoon SM, Gerasimidou D, Kuwahara R, Hytiroglou P, Yoo JE, Park YN, Theise ND (2011) Epithelial cell adhesion molecule (EpCAM) marks hepatocytes newly derived from stem/progenitor cells in humans. Hepatology 53(3):964–973. https://doi.org/10.1002/hep.24122

    Article  PubMed  Google Scholar 

  54. Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3(4):1473–1492. https://doi.org/10.1002/cphy.c120035

    Article  PubMed  Google Scholar 

  55. Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, Huang J, Alpini GD, Diehl AM (2008) Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26(8):2104–2113. https://doi.org/10.1634/stemcells.2008-0115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Swiderska-Syn M, Syn WK, Xie G, Kruger L, Machado MV, Karaca G, Michelotti GA, Choi SS, Premont RT, Diehl AM (2014) Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut 63(8):1333–1344. https://doi.org/10.1136/gutjnl-2013-305962

    Article  CAS  PubMed  Google Scholar 

  57. Streetz KL, Luedde T, Manns MP, Trautwein C (2000) Interleukin 6 and liver regeneration. Gut 47(2):309–312. https://doi.org/10.1136/gut.47.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmidt-Arras D, Rose-John S (2016) IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol 64(6):1403–1415. https://doi.org/10.1016/j.jhep.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  59. Modares NF, Polz R, Haghighi F, Lamertz L, Behnke K, Zhuang Y, Kordes C, Haussinger D, Sorg UR, Pfeffer K, Floss DM, Moll JM, Piekorz RP, Ahmadian MR, Lang PA, Scheller J (2019) IL-6 trans-signaling controls liver regeneration after partial hepatectomy. Hepatology. https://doi.org/10.1002/hep.30774

    Article  PubMed  Google Scholar 

  60. Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519(7541):57–62. https://doi.org/10.1038/nature14228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bohm F, Kohler UA, Speicher T, Werner S (2010) Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med 2(8):294–305. https://doi.org/10.1002/emmm.201000085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Preziosi ME, Monga SP (2017) Update on the mechanisms of liver regeneration. Semin Liver Dis 37(2):141–151. https://doi.org/10.1055/s-0037-1601351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA (2001) NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Gastroenterology 120(5):1251–1262. https://doi.org/10.1053/gast.2001.23239

    Article  CAS  PubMed  Google Scholar 

  64. Melgar-Lesmes P, Edelman ER (2015) Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 63(4):917–925. https://doi.org/10.1016/j.jhep.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315. https://doi.org/10.1038/nature09493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu J, Srivastava K, Wieland M, Runge A, Mogler C, Besemfelder E, Terhardt D, Vogel MJ, Cao L, Korn C, Bartels S, Thomas M, Augustin HG (2014) Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343(6169):416–419. https://doi.org/10.1126/science.1244880

    Article  CAS  PubMed  Google Scholar 

  67. Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y, Friedman SL (2015) beta-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol 63(1):141–147. https://doi.org/10.1016/j.jhep.2015.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Michalopoulos GK (2010) Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 176(1):2–13. https://doi.org/10.2353/ajpath.2010.090675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kang LI, Mars WM, Michalopoulos GK (2012) Signals and cells involved in regulating liver regeneration. Cells 1(4):1261–1292. https://doi.org/10.3390/cells1041261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Noguchi S, Ohba Y, Oka T (1991) Influence of epidermal growth factor on liver regeneration after partial hepatectomy in mice. J Endocrinol 128(3):425–431. https://doi.org/10.1677/joe.0.1280425

    Article  CAS  PubMed  Google Scholar 

  71. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, Ellis E, van Wenum M, Fuchs SA, de Ligt J, van de Wetering M, Sasaki N, Boers SJ, Kemperman H, de Jonge J, Ijzermans JN, Nieuwenhuis EE, Hoekstra R, Strom S, Vries RR, van der Laan LJ, Cuppen E, Clevers H (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1–2):299–312. https://doi.org/10.1016/j.cell.2014.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu H, Gehart H, Artegiani B, Dekkers F, Basak O, van Es J, de Sousa C, Lopes SM, Begthel H, Korving J, van den Born M, Zou C, Quirk C, Chiriboga L, Rice CM, Ma S, Rios A, Peters PJ, de Jong YP, Clevers H (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(6):1591–1606. https://doi.org/10.1016/j.cell.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  73. Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Alvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R (2018) Inflammatory cytokine tnfalpha promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175(6):1607–1619. https://doi.org/10.1016/j.cell.2018.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD, Ochiya T (2017) Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20(1):41–55. https://doi.org/10.1016/j.stem.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  75. Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, Wang C, Feng S, Zhang Z, Yue L, Sun L, Zhu Z, Chen X, Feng A, Wu J, Jiang Z, Li P, Cheng X, Gao D, Peng L, Hui L (2018) In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 23(6):806–819. https://doi.org/10.1016/j.stem.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  76. Fu GB, Huang WJ, Zeng M, Zhou X, Wu HP, Liu CC, Wu H, Weng J, Zhang HD, Cai YC, Ashton C, Ding M, Tang D, Zhang BH, Gao Y, Yu WF, Zhai B, He ZY, Wang HY, Yan HX (2019) Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res 29(1):8–22. https://doi.org/10.1038/s41422-018-0103-x

    Article  CAS  PubMed  Google Scholar 

  77. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356):386–389. https://doi.org/10.1038/nature10116

    Article  CAS  PubMed  Google Scholar 

  78. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L (2014) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14(3):370–384. https://doi.org/10.1016/j.stem.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  79. Shiota G, Itaba N (2017) Progress in stem cell-based therapy for liver disease. Hepatol Res 47(2):127–141. https://doi.org/10.1111/hepr.12747

    Article  PubMed  Google Scholar 

  80. Christ B, Bruckner S, Winkler S (2015) The therapeutic promise of mesenchymal stem cells for liver restoration. Trends Mol Med 21(11):673–686. https://doi.org/10.1016/j.molmed.2015.09.004

    Article  PubMed  Google Scholar 

  81. Seo MJ, Suh SY, Bae YC, Jung JS (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328(1):258–264. https://doi.org/10.1016/j.bbrc.2004.12.158

    Article  CAS  PubMed  Google Scholar 

  82. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58(4):570–581. https://doi.org/10.1136/gut.2008.154880

    Article  CAS  PubMed  Google Scholar 

  83. Tautenhahn HM, Bruckner S, Baumann S, Winkler S, Otto W, von Bergen M, Bartels M, Christ B (2016) Attenuation of postoperative acute liver failure by mesenchymal stem cell treatment due to metabolic implications. Ann Surg 263(3):546–556. https://doi.org/10.1097/SLA.0000000000001155

    Article  PubMed  Google Scholar 

  84. Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, Yarmush ML (2007) Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 363(2):247–252. https://doi.org/10.1016/j.bbrc.2007.05.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Miguel MP, Prieto I, Moratilla A, Arias J, Aller MA (2019) Mesenchymal stem cells for liver regeneration in liver failure: from experimental models to clinical trials. Stem Cells Int 2019:3945672. https://doi.org/10.1155/2019/3945672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williamson J, Wright NA (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406(6793):257. https://doi.org/10.1038/35018642

    Article  CAS  PubMed  Google Scholar 

  87. Mitchell C, Fausto N (2002) Bone marrow-derived hepatocytes : rare but promising. Am J Pathol 161(2):349–350. https://doi.org/10.1016/S0002-9440(10)64188-0

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6(11):1229–1234. https://doi.org/10.1038/81326

    Article  CAS  PubMed  Google Scholar 

  89. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422(6934):897–901. https://doi.org/10.1038/nature01531

    Article  CAS  PubMed  Google Scholar 

  90. Glorioso JM, Mao SA, Rodysill B, Mounajjed T, Kremers WK, Elgilani F, Hickey RD, Haugaa H, Rose CF, Amiot B, Nyberg SL (2015) Pivotal preclinical trial of the spheroid reservoir bioartificial liver. J Hepatol 63(2):388–398. https://doi.org/10.1016/j.jhep.2015.03.021

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article was supported by grants from the Zhejiang Provincial Natural Science Foundation of China (No. LQ19C050004 and LY19H200004) and the National Natural Science Foundation of China (No. 81772546). We thank Dr. Xiangwei Gao for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujun Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Tang, J. & Cai, X. Founder cells for hepatocytes during liver regeneration: from identification to application. Cell. Mol. Life Sci. 77, 2887–2898 (2020). https://doi.org/10.1007/s00018-020-03457-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03457-3

Keywords

Navigation