Skip to main content
Log in

Normal size of the fetal adrenal gland on prenatal magnetic resonance imaging

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The adrenal gland plays a vital role in fetal growth. Many disease states such as congenital adrenal hyperplasia, hemorrhage and tumors can lead to morphological changes in the gland. Ultrasound measurements of normal adrenal sizes in the fetus reported in the literature have shown a trend of increasing size with gestational age. There is no literature available on standard fetal adrenal sizes or detailed appearance by fetal MRI.

Objective

The purpose of this study was to provide MR data on the size and signal characteristics of the fetal adrenal gland throughout the second and third trimesters.

Materials and methods

In this retrospective review, we selected 185 prenatal MRIs obtained from Jan. 1, 2014, to May 31, 2017, with normal abdominal findings for inclusion. The adrenal glands were identified in coronal, sagittal or axial T2-W planes and coronal T1-W plane when available. We measured the length and thickness of the medial and lateral limbs of the right and left adrenal glands and recorded signal intensity on T1-W and T2-W sequences, gender and gestational age in each case.

Results

The gestational age (GA) ranged 18–37 weeks. Visibility of the adrenal glands on T2-W images was high (90.3–97.2%) up to 30 weeks of GA but declined afterward (47.5–62.2% at 31–37 weeks). Visibility on T1-W images increased with GA, ranging from 21.4% visibility at 18–22 weeks and increasing to 40% at 35–37 weeks. Mean lengths of the adrenal gland limbs steadily increased from 8.2 mm at 18–22 weeks to 11.0 mm at 35–37 weeks. In the second trimester, adrenal glands were low in signal intensity on T2-W images and were surrounded by hyperintense perirenal fatty tissue. In the third trimester, the glands became less distinct, with increasing signal and obliteration of perirenal tissue. The glands were moderately hyperintense on T1-W images throughout pregnancy, with increasing visibility as pregnancy progressed.

Conclusion

Normal sizes and signal intensities for adrenal glands are reported. Visibility of adrenal glands on T2-W images was 90.3–97.2% up to 30 weeks but declined thereafter. Visibility on T1-W images increased in the third trimester. Adrenal gland sizes increased with gestational age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Z, Meng H, Hou Z et al (2013) Fetal adrenal gland in the second half of gestation: morphometrical assessment with 3.0T post-mortem MRI. PLoS One 8:e75511

    Article  CAS  Google Scholar 

  2. Rosenberg E, Bowie J, Andreotti R, Fields S (1982) Sonographic evaluation of fetal adrenal glands. AJR Am J Roentgenol 139:1145–1147

    Article  CAS  Google Scholar 

  3. Van Vuuren SH, Damen-Elias HAM, Stigter RH et al (2012) Size and volume charts of fetal kidney, renal pelvis and adrenal gland. Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.11169

  4. Jirásek JE (1980) Human fetal endocrines. https://books.google.com/books?hl=en&lr=&id=Hzv6CAAAQBAJ&oi=fnd&pg=PA1&dq=Jirasek+JE+1980+Human+fetal+endocrines.+London:+martinus+nijhoff&ots=zm0Aqqzgtt&sig=kfTnXmTjs48Dr8madVOvZoeujrc#v=onepage&q&f=false. Accessed 23 Nov 2017

  5. Ishimoto H, Jaffe RB (2011) Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev 32:317–355

    Article  CAS  Google Scholar 

  6. Mesiano S, Jaffe RB (1997) Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev 18:378–403

    CAS  PubMed  Google Scholar 

  7. Garcia-Flores J, Cruceyra M, Cañamares M et al (2017) Sonographic evaluation of fetal adrenal gland in gestational diabetes: relation to fetal growth and maternal biochemical markers. J Ultrasound Med 36:999–1007

    Article  Google Scholar 

  8. Gonzales LW, Ertsey R, Ballard PL et al (1990) Glucocorticoid stimulation of fatty acid synthesis in explants of human fetal lung. Biochim Biophys Acta 1042:1–12

    Article  CAS  Google Scholar 

  9. Bolt RJ, van Weissenbruch MM, Lafeber HN, Delemarre-van de Waal HA (2001) Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol 32:76–91

    Article  CAS  Google Scholar 

  10. Scott EM, Thomas A, Mcgarrigle HHG, Lachelin GCL (1990) Serial adrenal ultrasonography in normal neonates. J Ultrasound Med 9:279–283

    Article  CAS  Google Scholar 

  11. Rubenstein SC, Benacerraf BR, Retik AB, Mandell J (1995) Fetal suprarenal masses: sonographic appearance and differential diagnosis. Ultrasound Obstet Gynecol 5:164–167

    Article  CAS  Google Scholar 

  12. Lee W, Comstock CH, Jurcak-Zaleski S (1992) Prenatal diagnosis of adrenal hemorrhage by ultrasonography. J Ultrasound Med 11:369–371

    Article  CAS  Google Scholar 

  13. Flanagan SM, Rubesova E, Jaramillo D, Barth RA (2016) Fetal suprarenal masses — assessing the complementary role of magnetic resonance and ultrasound for diagnosis. Pediatr Radiol 46:246–254

    Article  Google Scholar 

  14. Lackova E, Cunderlik A, Ticha L, Gabor M (2017) Fetal adrenal gland enlargement — prenatal and postnatal management. Neuro Endocrinol Lett 38:31–34

    PubMed  Google Scholar 

  15. Heese S, Hammer K, Möllers M et al (2018) Adrenal gland size in growth restricted fetuses. J Perinat Med 46:900–904

    Article  CAS  Google Scholar 

  16. Hoffman MK, Turan OM, Parker CB et al (2016) Ultrasound measurement of the fetal adrenal gland as a predictor of spontaneous preterm birth. Obstet Gynecol 127:726–734

    Article  Google Scholar 

  17. Krzyzanowski A, Karwasik-Kajszczarek K, Dymanowska-Dyjak I et al (2014) Ultrasound evaluation of fetal adrenal gland volume. The role of fetal adrenal glands in the pathogenesis of preterm labor. Ginekol Pol 85:49–53

    Article  Google Scholar 

  18. Turan OM, Turan S, Funai EF et al (2011) Ultrasound measurement of fetal adrenal gland enlargement: an accurate predictor of preterm birth. Am J Obstet Gynecol 204:311.e1–311.e10

  19. Buhimschi CS, Turan OM, Funai EF et al (2008) Fetal adrenal gland volume and cortisol/dehydroepiandrosterone sulfate ratio in inflammation-associated preterm birth. Obstet Gynecol 111:715–722

    Article  Google Scholar 

  20. Ibrahim MI, Sherif A, El-Kady M et al (2015) Can three-dimensional ultrasound measurement of fetal adrenal gland enlargement predict preterm birth? Arch Gynecol Obstet 292:569–578

    Article  Google Scholar 

  21. Jeanty P, Chervenak F, Grannum P, Hobbins JC (1984) Normal ultrasonic size and characteristics of the fetal adrenal glands. Prenat Diagn 4:21–28

    Article  CAS  Google Scholar 

  22. Hata K, Hata T, Kitao M (1985) Ultrasonographic identification and measurement of the human fetal adrenal gland in utero. Int J Gynaecol Obstet 23:355–359

    Article  CAS  Google Scholar 

  23. Jamigorn M, Phupong V (2017) Nomograms of the whole foetal adrenal gland and foetal zone at gestational age of 16–24 weeks. J Obstet Gynaecol 37:867–871

    Article  Google Scholar 

  24. Helfer TM, Rolo LC, de Brito Melo Okasaki NA et al (2017) Reference ranges of fetal adrenal gland and fetal zone volumes between 24 and 37+6 weeks of gestation by three-dimensional ultrasound. J Matern Fetal Neonatal Med 30:568–573

    Article  Google Scholar 

  25. Huisman TAGM, Kellenberger CJ (2008) MR imaging characteristics of the normal fetal gastrointestinal tract and abdomen. Eur J Radiol 65:170–181

    Article  Google Scholar 

  26. Lewis E, Kurtz A, Dubbins P et al (1982) Real-time ultrasonographic evaluation of normal fetal adrenal glands. J Ultrasound Med 1:265–270

    Article  CAS  Google Scholar 

  27. Prayer D, Brugger PC (2007) Investigation of normal organ development with fetal MRI. Eur Radiol 17:2458–2471

    Article  Google Scholar 

  28. Brugger PC, Prayer D (2006) Fetal abdominal magnetic resonance imaging. Eur J Radiol 57:278–293

    Article  Google Scholar 

  29. Al-Alwan I, Navarro O, Daneman D, Daneman A (1999) Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J Pediatr 135:71–75

    Article  CAS  Google Scholar 

  30. Chang C-H, Yu C-H, Chang F-M et al (2002) Assessment of fetal adrenal gland volume using three-dimensional ultrasound. Ultrasound Med Biol 28:1383–1387

    Article  Google Scholar 

  31. Gaillard DA, Lallemand AV, Moirot HH et al (1990) Fetal adrenal development during the second trimester of gestation. Pediatr Pathol 10:335–350

    Article  CAS  Google Scholar 

  32. Lewis E, Kurtz AB, Dubbins PA et al (1982) Real-time ultrasonographic evaluation of normal fetal adrenal glands. J Ultrasound Med 1:265–270

    Article  CAS  Google Scholar 

  33. Nowak D, Góralczyk K, Zurada A, Gielecki J (2007) Morphometrical analysis of the human suprarenal gland between the 4th and 7th months of gestation. Ann Anat 189:575–582

    Article  Google Scholar 

  34. Ishida M, Gonoi W, Hagiwara K et al (2015) Early postmortem volume reduction of adrenal gland: initial longitudinal computed tomographic study. Radiol Med 120:662–669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anilawan Smitthimedhin.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smitthimedhin, A., Rubio, E.I., Blask, A.R. et al. Normal size of the fetal adrenal gland on prenatal magnetic resonance imaging. Pediatr Radiol 50, 840–847 (2020). https://doi.org/10.1007/s00247-020-04629-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04629-w

Keywords

Navigation