Skip to main content
Log in

Multi-geophysical Approach for the Characterization of Thermally-Induced Cracks in Granite: Discussion of Reproducibility and Persistence

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We study damage induced by low temperature variations in granite samples given their role in shallow geological reservoirs. We consider two thermal treatments, slow cooling and thermal shock, and implement a multi-geophysical approach to characterize the induced micro-scale damage. The methodology consists in monitoring elastic wave velocity and thermal conductivity as well as describing the damage by the way of Hg-porosity measurements and microscopic observations. To discuss the reproducibility of the induced damage, the same thermal protocol is performed on five samples. Our first results indicate that the thermal shock leads to a more pronounced damage. This is interpreted to be due to a larger variety of nucleated intragranular and intergranular cracks as observed by SEM and optic microscope. Yet, this more significant damage does not appear reproducible from one sample to another compared to the damage introduced by slow cooling. According to this first result, thereby, we propose a timely monitoring of elastic wave velocity, conductivity and Hg-porosity. It appears that the damage introduced by the slow cooling, unlike the thermal shock, does not present a long persistence. Indeed, after 15 days, the different properties had returned to their initial state. A time-dependence mechanism is proposed to discuss this observed process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Omari, A., Brunetaud, X., Beck, K., & Al-Mukhtar, M. (2016). Hygrothermal stress and damage risk in the stones of the castle of chambord-france. International Journal of Civil and Structural Engineering 4(3):https://doi.org/10.6088/ijcser.201304010039

  • Bachrach, R., Dvorkin, J., & Nur, A. M. (2000). Seismic velocities and poisson’s ratio of shallow unconsolidated sandsseismic properties of shallow sands. Geophysics, 65(2), 559–564.

    Google Scholar 

  • Bauer, S., & Johnson, B., et al. (1979). Effects of slow uniform heating on the physical properties of the westerly and charcoal granites. In: 20th US symposium on rock mechanics (USRMS), American Rock Mechanics Association

  • Beck, K., Janvier-Badosa, S., Brunetaud, X., Torok, A., & Al-Mukhtar, M. (2016). Non-destructive diagnosis by colorimetry of building stone subjected to high temperatures. European Journal of Environmental and Civil Engineering, 20(6), 643–655.

    Google Scholar 

  • Belayachi, N., Mallet, C., & El Marzak, M. (2019). Thermally-induced cracks and their effects on natural and industrial geomaterials. Journal of Building Engineering, 25, 100806.

    Google Scholar 

  • Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars, part 1. Journal of Applied Mechanics, 65, 1083–1102.

    Google Scholar 

  • Cappa, F., & Rutqvist, J. (2011). Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of co2. International Journal of Greenhouse Gas Control, 5(2), 336–346.

    Google Scholar 

  • Carcione, J. M., Ursin, B., & Nordskag, J. I. (2007). Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics, 72(5), E193–E204.

    Google Scholar 

  • Caspari, E., Milani, M., Rubino, J. G., Muller, T. M., Quintal, B., & Holliger, K. (2016). Numerical upscaling of frequency-dependent p-and s-wave moduli in fractured porous media. Geophysical Prospecting, 64(4), 1166–1179.

    Google Scholar 

  • Chaki, S., Takarli, M., & Agbodjan, W. (2008). Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22(7), 1456–1461.

    Google Scholar 

  • Chen, S., Yang, C., & Wang, G. (2017). Evolution of thermal damage and permeability of beishan granite. Applied Thermal Engineering, 110, 1533–1542.

    Google Scholar 

  • Cooper, H., & Simmons, G. (1977). The effect of cracks on the thermal expansion of rocks. Earth and Planetary Science Letters, 36, 404–412.

    Google Scholar 

  • Darot, M., & Gueguen, Y. (1986). Slow crack growth in minerals and rocks: Theory and experiments. Pure and Applied Geophysics, 124(4), 677–692.

    Google Scholar 

  • Darot, M., Gueguen, Y., & Baratin, M. (1992). Permeability of thermally cracked granite. Geophysical Research Letter, 19(9), 869–872.

    Google Scholar 

  • David, C., Menéndez, B., & Darot, M. (1999). Influence of stress-induced and thermal cracking on physical properties and microstructure of la peyratte granite. International Journal of Rock Mechanics and Mining Sciences, 36(4), 433–448.

    Google Scholar 

  • Dwivedi, R., Goel, R., Prasad, V., & Sinha, A. (2008). Thermo-mechanical properties of indian and other granites. International Journal of Rock mechanics and mining Sciences, 45(3), 303–315.

    Google Scholar 

  • Feng, Z., Zhao, Y., Zhou, A., & Zhang, N. (2012). Development program of hot dry rock geothermal resource in the yangbajing basin of china. Renewable energy, 39(1), 490–495.

    Google Scholar 

  • Fredrich, J. T., & Tf, Wong. (1986). Micromechanics of thermally induced cracking in three crustal rocks. Journal of Geophysical Research: Solid Earth, 91(B12), 12743–12764.

    Google Scholar 

  • Friedman, M., & Johnson, B., et al. (1978). Thermal cracks in unconfined sioux quartzite. In: 19th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association

  • Gautam, P., Verma, A., Jha, M., Sharma, P., & Singh, T. (2018). Effect of high temperature on physical and mechanical properties of jalore granite. Journal of Applied Geophysics, 159, 460–474.

    Google Scholar 

  • Glover, P., Baud, P., Darot, M., Meredith, P., Boon, S., LeRavalec, M., et al. (1995). \(\alpha /\beta \) phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, 120(3), 775–782.

    Google Scholar 

  • Griffiths, L., Heap, M., Baud, P., & Schmittbuhl, J. (2017). Quantification of microcrack characteristics and implications for stiffness and strength of granite. International Journal of Rock Mechanics and Mining Sciences, 100, 138–150.

    Google Scholar 

  • Griffiths, L., Lengliné, O., Heap, M., Baud, P., & Schmittbuhl, J. (2018). Thermal cracking in westerly granite monitored using direct wave velocity, coda wave interferometry, and acoustic emissions. Journal of Geophysical Research: Solid Earth, 123(3), 2246–2261.

    Google Scholar 

  • Guéguen, Y., & Kachanov, M. (2011). Effective elastic properties of cracked rocks—an overview, in, mechanics of crustal rocks. CISM Courses and Lectures, 533, 73–125.

    Google Scholar 

  • Hadley, K. (1976). Comparison of calculated and observed crack densities and seismic velocities in westerly granite. Journal of Geophysical Research, 81(20), 3484–3494.

    Google Scholar 

  • Han, T., Best, A. I., Sothcott, J., North, L. J., & MacGregor, L. M. (2015). Relationships among low frequency (2 hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. Journal of Applied Geophysics, 112, 279–289.

    Google Scholar 

  • Jansen, D., Carlson, S., Young, R., & Hutchins, D. (1993). Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in lac du bonnet granite. Journal of Geophysical Research: Solid Earth, 98(B12), 22231–22243.

    Google Scholar 

  • Jin, P., Hu, Y., Shao, J., Zhao, G., Zhu, X., & Li, C. (2019). Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics, 78, 118–128.

    Google Scholar 

  • Johnson, B., Gangi, A., & Handin, J. (1978). Thermal cracking of rock subjected to slow, uniform temperature changes. In: 19th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association

  • Johnson, H. H., & Paris, P. C. (1968). Sub-critical flaw growth. Engineering Fracture Mechanics, 1(1), 3–45.

    Google Scholar 

  • Jones, G., Zielinski, M., & Sentenac, P. (2012). Mapping desiccation fissures using 3-d electrical resistivity tomography. Journal of Applied Geophysics, 84, 39–51.

    Google Scholar 

  • Kachanov, M. (1980). Continuum model of medium with cracks. Journal of the engineering mechanics division, 106, 1039–1051.

    Google Scholar 

  • Kant, M. A., Meier, T., Rossi, E., Schuler, M., Becker, D., Höser, D., et al. (2017). Thermal spallation drilling-an alternative drilling technology for hard rock drilling. Oil Gas, 3(1), OG23–OG25.

    Google Scholar 

  • Kemna, A., Vanderborght, J., Kulessa, B., & Vereecken, H. (2002). Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ert) and equivalent transport models. Journal of Hydrology, 267(3–4), 125–146.

    Google Scholar 

  • Kim, K., Kemeny, J., & Nickerson, M. (2014). Effect of rapid thermal cooling on mechanical rock properties. Rock mechanics and rock engineering, 47(6), 2005–2019.

    Google Scholar 

  • Kranz, R. L. (1983). Microcracks in rocks: a review. Tectonophysics, 100(1–3), 449–480.

    Google Scholar 

  • Kumari, W., Ranjith, P., Perera, M., Chen, B., & Abdulagatov, I. (2017). Temperature-dependent mechanical behaviour of australian strathbogie granite with different cooling treatments. Engineering Geology, 229, 31–44.

    Google Scholar 

  • Laubach, S. E., Lander, R. H., Criscenti, L. J., Anovitz, L. M., Urai, J. L., Pollyea, R. M., et al. (2017). The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials. Reviews of Geophysics, 57, https://doi.org/10.1029/2019RG000671.

  • Lawn, B., & Wilshaw, R. (1975). Fracture of brittle solids. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lin, W. (2002). Permanent strain of thermal expansion and thermally induced microcracking in inada granite. Journal of Geophysical Research: Solid Earth 107(B10):ECV–3

  • Mallet, C., Fortin, J., Guéguen, Y., & Bouyer, F. (2013). Effective elastic properties of cracked solids: an experimental investigation. International Journal of Fracture 182(2):https://doi.org/10.1007/s10704-013-9855-y

  • Mallet, C., Fortin, J., Guéguen, Y., & Bouyer, F. (2015). Brittle creep and subcritical crack propagation in glass submitted to triaxial conditions. Journal of Geophysical Research, 120(2), 879–893. https://doi.org/10.1002/2014JB011231.

    Article  Google Scholar 

  • Nakaten, N., Schlüter, R., Azzam, R., & Kempka, T. (2014). Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and co2 emissions of an integrated ucg-ccs process. Energy, 66, 779–790.

    Google Scholar 

  • Nasseri, M., Schubnel, A., & Young, R. (2007). Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated westerly granite. International Journal of Rock Mechanics and Mining Sciences, 44(4), 601–616.

    Google Scholar 

  • Nasseri, M., Schubnel, A., Benson, P. M., & Young, R. (2009). Common evolution of mechanical and transport properties in thermally cracked westerly granite at elevated hydrostatic pressure. Rock Physics and Natural Hazards, 166, 5–7.

    Google Scholar 

  • Ndao, B., Do, D. P., & Hoxha, D. (2017). P and s wave anisotropy to characterize and quantify damage in media: laboratory experiment using synthetic sample with aligned microcracks. Geophysical Prospecting, 65, 181–200.

    Google Scholar 

  • Ougier-Simonin, A., Guéguen, Y., Fortin, J., Schubnel, A., & Bouyer, F. (2011). Permeability and elastic properties of cracked glass under pressure. Journal of Geophysical Research, 116, B07203. https://doi.org/10.1029/2010JB008077.

    Article  Google Scholar 

  • Richter, D., & Simmons, G. (1974). Thermal expansion behavior of igneous rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 11, 403–411.

    Google Scholar 

  • Ringwood, A. (1985). Disposal of high-level nuclear wastes: a geological perspective. Mineralogical magazine, 49(351), 159–176.

    Google Scholar 

  • Rong, G., Peng, J., Cai, M., Yao, M., Zhou, C., & Sha, S. (2018). Experimental investigation of thermal cycling effect on physical and mechanical properties of bedrocks in geothermal fields. Applied Thermal Engineering, 141, 174–185.

    Google Scholar 

  • Rummel, F. (1992). Physical properties of the rock in the granitic section of borehole gpk1, soultz-sous-forêts. Geothermal Energy in Europe: the soultz hot dry rock project pp 199–216

  • Siratovich, P. A., Villeneuve, M. C., Cole, J. W., Kennedy, B. M., & Bégué, F. (2015). Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 80, 265–280.

    Google Scholar 

  • Sarout, J. (2006). Propriétés physiques et anisotropie des roches argileuses: Modélisation micromécanique et expériences triaxiales. PhD thesis

  • Spray, J. (2010). Frictional melting processes in planetary materials: From hypervelocity impact to earthquakes. Annual Review of Earth and Planetary Sciences, 38, 221–254.

    Google Scholar 

  • Storz, H., Storz, W., & Jacobs, F. (2000). Electrical resistivity tomography to investigate geological structures of the earth’s upper crust. Geophysical Prospecting, 48(3), 455–471.

    Google Scholar 

  • Walsh, J. (1965). The effect of cracks on the uniaxial elastic compression of rocks. Journal of Geophysical Research, 70(2), 399–411.

    Google Scholar 

  • Wang, X., Schubnel, A., Fortin, J., Gueguen, Y., & Ge, H. K. (2012). High Vp/Vs ratio: Saturated cracks or anisotropy effects? Geophysical Research Letters, 39, L11307. https://doi.org/10.1029/2012GL051742.

    Article  Google Scholar 

  • Wang, X., Schubnel, A., Fortin, J., Gueguen, Y., & Ge, H. K. (2013). Physical properties and brittle strength of thermally cracked granite under confinement. Journal of Geophysical Research, 118, 6099–6112. https://doi.org/10.1002/2013JB010340.

    Article  Google Scholar 

  • Wong, T., & Brace, W. (1979). Thermal expansion of rocks: Some measurements at high pressure. Tectonophysics, 57, 95–117.

    Google Scholar 

  • Wuttke, F., Sattari, A., Rizvi, Z., & Motra, H. (2017). Advanced meso-scale modelling to study the effective thermo-mechanical parameter in solid geomaterial. Advances in Laboratory Testing and Modelling of Soils and Shales (pp. 85–95). New York: Springer.

    Google Scholar 

  • Xiong, M. X., & Liew, J. R. (2016). Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes. Materials & Design, 104, 414–427.

    Google Scholar 

  • Yong, C., & Cy, Wang. (1980). Thermally induced acoustic emission in westerly granite. Geophysical Research Letters, 7(12), 1089–1092.

    Google Scholar 

  • Zhang, F., Zhao, J., Hu, D., Skoczylas, F., & Shao, J. (2018). Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 51(3), 677–694.

    Google Scholar 

  • Zhao, X., Zhao, Z., Guo, Z., Cai, M., Li, X., Li, P., et al. (2018). Influence of thermal treatment on the thermal conductivity of beishan granite. Rock Mechanics and Rock Engineering, 51(7), 2055–2074.

    Google Scholar 

  • Zhao, Y., Feng, Z., Zhao, Y., & Wan, Z. (2017). Experimental investigation on thermal cracking, permeability under hthp and application for geothermal mining of hdr. Energy, 132, 305–314.

    Google Scholar 

Download references

Acknowledgements

Data reported in this work can be obtained from the corresponding author (Céline Mallet) upon request. Financial support from Lamé Laboratory is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Mallet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussaid, M.S., Mallet, C., Beck, K. et al. Multi-geophysical Approach for the Characterization of Thermally-Induced Cracks in Granite: Discussion of Reproducibility and Persistence. Pure Appl. Geophys. 177, 3301–3314 (2020). https://doi.org/10.1007/s00024-020-02438-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02438-8

Keywords

Navigation