Skip to main content
Log in

Solute Dispersion of Organic Compounds on Undisturbed Soil Columns

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Results of column tests performed on large undisturbed samples are presented, focusing on the behavior of the hydrodynamic dispersion coefficient (\(D_h\)). Tests were performed employing petroleum produced water from onshore facilities percolating sandy soils with different fine contents. To measure the organic content of the produced water, this work used the parameter TPH (total petroleum hydrocarbons). The obtained results show that the longitudinal dispersion coefficient (\(\alpha _L\)) varies with flow velocity (\(v_s\)) and that both the ratio between the hydrodynamic dispersion and diffusion coefficients (\(D_h/D\)) and \(\alpha _L\) are approximately two orders of magnitude higher than the values normally found in the literature for the same type of soil. This is probably related to the fact that the organic compounds measured by TPH in the produced water are partially in dissolved form, but dispersed particles are also transported by water flow, increasing the experimental values of \(D_h\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ABNT-NBR-6459: Solo—Determinação do limite de liquidez, technical report, ABNT, Rio de Janeiro (1984)

  • ABNT-NBR-6508: Grãos de solos que passam na peneira de 4, 8 mm—Determinação da massa específica, technical report, ABNT, Rio de Janeiro (1984)

  • ABNT-NBR-7180: Solo—Determinação do limite de plasticidade, technical report, ABNT, Rio de Janeiro (1984)

  • ABNT-NBR-7181: Soil—Grain size analysis (in Portuguese), technical report, ABNT, Rio de Janeiro (2016)

  • Aggelopoulos, C.A., Tsakiroglou, C.D.: The longitudinal dispersion coefficient of soils as related to the variability of local permeability. Water Air. Soil Pollut. 185(1–4), 223–237 (2007)

    Article  Google Scholar 

  • Almeida, V., Machado, S.: Desenvolvimento de aparato para coleta de amostras indeformadas de grandes dimensões. In: XVIII Congr. Bras. Mecânica dos Solos e Eng. Geotécnica, (Belo Horizonte), pp. 1–7 (2016)

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, INC, New York (1988)

    Google Scholar 

  • Bear, J., Cheng, A.H.: Modeling Groudwater Flow and Contaminant Transport. Springer, Berlin (2010)

    Book  Google Scholar 

  • Berkowitz, B., Dror, I., Yaron, E.B.: Contaminant Geochemistry. Springer, Berlin (2008)

    Book  Google Scholar 

  • Brenner, H., Edwards, D.A.: Macrotransport Processes. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  • Cheryan, M., Rajagopalan, N.: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151(1), 13–28 (1998)

    Article  Google Scholar 

  • Chrysikopoulos, C.V., Katzourakis, V.E.: Colloid particle size-dependent dispersivity. Water Resour. Res. 51(6), 4668–4683 (2015)

    Article  Google Scholar 

  • Curtin, D., Steppuhn, H., Selles, F.: Clay dispersion in relation to sodicity, electrolyte concentration, and mechanical effects. Soil Sci. Soc. Am. J. 58(3), 955–962 (1994)

    Article  Google Scholar 

  • Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85(A9), 1245–1252 (2007)

    Article  Google Scholar 

  • Embrapa Solos-UEP Recife: Levantamento Exploratório-Reconhecimento de Solos do Estado do Rio Grande do Norte, technical report, Recife-PE (1971)

  • EPA-SW-846: Test Method 6200: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, technical report (2007)

  • Feitosa, F.A.C., Filho, J.M., Feitosa, E.C., Demetrio, J.G.A.: Hidrogeologia Conceitos e aplicações. Rio de Janeiro: CPRM, 3 edn (2008)

  • Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

  • Ghosh, N.C., Sharma, K.D.: Groundwater Modelling and Management. Capital Pub, New Delhy (2009)

    Google Scholar 

  • Gustafson, J.B.: Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Amherst Scientific Publishers, Amherst (1997)

    Google Scholar 

  • Hunt, A.G., Skinner, T.E., Ewing, R.P., Ghanbarian-Alavijeh, B.: Dispersion of solutes in porous media. Eur. Phys. J. B 80(4), 411–432 (2011)

    Article  Google Scholar 

  • Lima, F.A.L.V.: Transporte de contaminantes oriundos da água de produção da indústria petrolífera em solos areno-argilosos compactados. PhD thesis, Universidade Federal da Bahia, Salvador (2018)

  • Lima, F.A.L.V., Machado, S.L.: Compacted soil hydraulic behaviour during the percolation of petroleum produced water. J. Environ. Eng. Sci. 14, 1–12 (2019)

    Article  Google Scholar 

  • Momper, J.A.: Oil Migration Limitations Suggested by Geological and Geochemical Considerations. AAPG Special Volumes, CN 8 (1978)

  • Nezhad, M.M.: Stochastic Finite Element Modelling of Flow and Solute Transport in Dual Domain System. PhD thesis, University of Exeter, Exeter (2010a)

  • Nezhad, M.M., Javadi, A.A., Rezania, M.: Modeling of contaminant transport in soils considering the effects of micro- and macro-heterogeneity. J. Hydrol. 404(3–4), 332–338 (2011a)

    Article  Google Scholar 

  • Nezhad, M.M., Javadi, A .A., Abbasi, F.: Stochastic finite element modelling of water flow in variably saturated heterogeneous soils. Int. J. Numer. Anal. Methods Geomech. 35, 1389–1408 (2011b)

    Article  Google Scholar 

  • Nezhad, M.M., Rezania, M., Baioni, E.: Transport in Porous Media with Nonlinear Flow Condition. Transp. Porous Media 126(1), 5–22 (2019)

    Article  Google Scholar 

  • Ogata, A., Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media, technical report (1961)

  • Parker, J.C.: Multiphase flow and transport in porous media. Rev. Geophys. 27(3), 311–328 (1989)

    Article  Google Scholar 

  • Perkins, T.K., Johnston, O.C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. 3(1), 70–84 (1963)

    Article  Google Scholar 

  • Rowell, D.L., Payne, D., Ahmad, N.: The effect of the concentration and movement of solutions on the swelling, dispersion, and movement of clay in saline and alkali soils. J. Soil Sci. 20, 176–188 (1969)

    Article  Google Scholar 

  • Rudraiah, N., Siddheshwar, P., Pal, D., Vortmeyer, D.: Non-Darcy effects on transient dispersion in porous media. Am. Soc. Mech. Eng. Heat Transf. Div. HTD 96, 623–628 (1988)

    Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, New York (2011)

    Book  Google Scholar 

  • Sato, T., Tanahashi, H., Loáiciga, H.A.: Solute dispersion in a variably saturated sand. Water Resour. Res. 39(6), 1–7 (2003)

    Article  Google Scholar 

  • Shackelford, C.D.: Critical concepts for column testing. J. Geotech. Eng. 120(10), 1804–1828 (1994)

    Article  Google Scholar 

  • Shackelford, C.D.: The ISSMGE Kerry Rowe Lecture: the role of diffusion in environmental geotechnics. Can Geotech. J. 51(11), 1219–1242 (2014). https://doi.org/10.1139/cgj-2013-0277

    Article  Google Scholar 

  • Shivakumar, P.N., Rudraiah, N., Pal, D., Siddheshwar, P.G.: Closed form solution for unsteady convective diffusion in a fluid-saturated sparsely packed porous medium. Int. Commun. Heat Mass Transf. 14(2), 137–145 (1987)

    Article  Google Scholar 

  • Tahar, J.A.-D.: Contribution à l’étude des deplacement par fluides miscibles dans les milieux poreux. PhD thesis, Université de Lille (1970)

  • Tien, C., Payatakes, A.C.: Advances in deep bed filtration. AIChE J. 25(5), 737–759 (1979)

    Article  Google Scholar 

  • Tobiason, J.E., O’Melia, C.R.: Physicochemical aspects of particle removal in depth filtration. J. Am. Water Work. Assoc. 80(12), 54–64 (1988)

    Article  Google Scholar 

  • Van Genuchten, M.T., Alves, W.J.: Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation, Technical Report (1982)

  • Yao, K.M., Habibian, M.T., O’Melia, C.R.: Water and waste water filtration: concepts and applications. Environ. Sci. Technol. 5(11), 1105–1112 (1971)

    Article  Google Scholar 

  • Zhang, Y., Person, M., Merino, E.: Hydrologic and geochemical controls on soluble benzene migration in sedimentary basins. Geofluids 5(2), 83–105 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Lemos Machado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, R.G.U., de Oliveira, I.B., Machado, S.L. et al. Solute Dispersion of Organic Compounds on Undisturbed Soil Columns. Transp Porous Med 132, 267–282 (2020). https://doi.org/10.1007/s11242-020-01390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01390-4

Keywords

Navigation