Skip to main content
Log in

Color image steganography scheme using gray invariant in AMBTC compression domain

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel color image steganography scheme using gray invariant in AMBTC compression domain is proposed. Unlike the conventional schemes, the proposed scheme embeds the secret data into a compressed color image while keeping gray pixel values intact. First, the proposed scheme partitions each color component (R, G, B) of a cover image into non-overlapping blocks with the same size and calculates the standard deviation and variance of the sub-block. Next, two least complex blocks having minimum variance out of the three-color blocks are compressed using dynamic AMBTC compression and the secret data is embedded into bit-planes of smooth compressed blocks. To keep the gray pixel values invariant, the pixel values of the most complex color block are adjusted according to the pixel intensity on the reconstructed compressed blocks. Therefore, the proposed scheme can reduce the size of the color image and embed a significant amount of data while keeping gray pixel values intact. The main advantages of the proposed scheme are: (1) reduces the required bandwidth for image transmission due to AMBTC compression, (2) preserves gray values of the original cover image, which helps in many applications such as black and white printing, fingerprint scanning and so on, (3) uses color plane blocks selectively for data hiding which makes the proposed scheme more robust, and (4) uses a dynamic AMBTC compression for least complex color planes, which helps in achieving good PSNR and high embedding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen, Y. Y., & Chi, K. Y. (2019). Cloud image watermarking: High quality data hiding and blind decoding scheme based on block truncation coding. Multimedia Systems, 25, 551–563.

    Article  Google Scholar 

  • Chen, J., Hong, W., Chen, T. S., & Shiu, C. W. (2008). Steganography for BTC compressed images using no distortion technique. The Imaging Science Journal,58, 177–185.

    Article  Google Scholar 

  • Chuang, J. C., & Chang, C. C. (2006). Using a simple and fast image compression algorithm to hide secret information. International Journal Computer Application,28, 1735–1743.

    Article  Google Scholar 

  • Delp, E., & Mitchell, O. (1979). Image compression using block truncation coding. IEEE Transactions on Communications,27(9), 1335–1342.

    Article  Google Scholar 

  • Goldberg, M., Boucher, P., & Shlien, S. (1986). Image compression using adaptive vector quantization. IEEE Transactions on Communications,34(2), 180–187.

    Article  Google Scholar 

  • Golomb, S. (1966). Run-length encodings. IEEE Transactions on Information Theory,12(3), 399–401.

    Article  Google Scholar 

  • Gooch, A. A., Olsen, C. S., Tumblin, J., & Gooch, B. (2005). “Color2Gray: salience-preserving color removal. In: Proceedings of the ACM SIGGRAPH Papers (pp. 634–639).

  • Gregory, K. W. (1991). The JPEG still picture compression standard. Communications of the ACM,34(4), 30–44.

    Article  Google Scholar 

  • Grundland, M., & Dodgson, N. A. (2007). Decolorize: fast contrast enhancing color to grayscale conversion. Pattern Recognition,40(11), 2891–2896.

    Article  Google Scholar 

  • Hou, D., Zhang, W., Chen, K., Lin, S. J., & Yu, N. (2019). Reversible data hiding in color image with grayscale invariance. IEEE Transactions on Circuits and Systems for Video Technology,29(2), 363–374.

    Article  Google Scholar 

  • Huang, Y. H., Chang, C. C., & Chen, Y. H. (2017). Hybrid secret hiding schemes based on absolute moment block truncation coding. Multimedia Tools and Applications,76, 6159–6174.

    Article  Google Scholar 

  • Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE,40(9), 1098–1101.

    Article  Google Scholar 

  • Kamstra, L. H. J., & Heijmans, A. M. (2005). Reversible data embedding into images using wavelet techniques and sorting. IEEE Transactions on Image Processing,14(12), 2082–2090.

    Article  MathSciNet  Google Scholar 

  • Kanan, C., & Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in image recognition. PLoS ONE,7(1), e29740.

    Article  Google Scholar 

  • Kumar, R., & Chand, S. (2013). A new image steganography technique based on similarity in secret message. In: IEEE (pp. 376–379).

  • Kumar, R., & Chand, S. (2017). A novel high capacity reversible data hiding scheme based on pixel intensity segmentation. Multimedia Tools and Applications,76(1), 979–996.

    Article  Google Scholar 

  • Kumar, R., Chand, S., & Singh, S. (2019a). An optimal high capacity reversible data hiding scheme using move to front coding for LZW codes. Multimedia Tools and Applications,78(16), 22977–23001.

    Article  Google Scholar 

  • Kumar, R., Kim, D. S., & Jung, K. H. (2019b). Enhanced AMBTC based data hiding method using hamming distance and pixel value differencing. Journal of Information Security and Applications,47, 94–103.

    Article  Google Scholar 

  • Kumar, R., Kumar, N., Jung, K. H. (2019). A new data hiding method using adaptive quantization & dynamic bit plane based AMBTC. In: 6th international conference on signal processing and integrated networks (SPIN) (pp. 854–858).

  • Kumar, R., Malik, A., Singh, S., Kumar, B., & Chand, S. (2016). Reversible data hiding scheme for LZW codes using even-odd embedding strategy. In: International conference on computing, communication and automation (ICCCA2016) (pp. 1399–1403).

  • Kumar, R., Saini, K. K., & Chand, S. (2013). A new steganography technique using snake scan ordering strategy. International Journal of Image, Graphics and Signal Processing,6, 25–32.

    Article  Google Scholar 

  • Lema, M. D., & Mitchell, O. R. (1984). Absolute moment block truncation coding and its application to color image. IEEE Transactions on Communications,32, 1148–1157.

    Article  Google Scholar 

  • Malik, A., Kumar, R., & Singh, S. (2016). Reversible data hiding scheme for LZW codes using LSB flipping strategy. In: AICTC’16 (pp. 1–5). ACM.

  • Malik, A., Sikka, G., & Verma, H. K. (2018a). A high capacity data hiding scheme using modified AMBTC compression technique. International Arab Journal of Information Technology (IAJIT),16(1), 148–155.

    Google Scholar 

  • Malik, A., Singh, S., & Kumar, R. (2018b). Recovery based high capacity reversible data hiding scheme using even-odd embedding. Multimedia Tools and Applications,77(12), 15803–15827.

    Article  Google Scholar 

  • Ni, Z., Shi, Y. Q., Ansari, N., & Su, W. (2006). Reversible data hiding. IEEE Transaction on Circuits and Systems for Video Technology,16(3), 354–362.

    Article  Google Scholar 

  • Ou, D., & Sun, W. (2015). High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimedia Tools and Applications,74, 9117–9139.

    Article  Google Scholar 

  • Simmons, G. J. (1983). The prisoners’ problem and the subliminal channel. In: Proceedings of the advances in cryptology (CRYPTO ‘83) (pp. 51–67).

    Chapter  Google Scholar 

  • SIPI. (2019). The USC-SIPI Image Database, http://sipi.usc.edu/database/.

  • Sowmya, V., Govind, D., & Soman, K. P. (2017). Significance of incorporating chrominance information for effective color-to-grayscale image conversion. Signal, Image and Video Processing,11(1), 129–136.

    Article  Google Scholar 

  • Sun, W., Lu, Z. M., Wen, Y. C., Yu, F. X., & Shen, R. J. (2013). High performance reversible data hiding for block truncation coding compressed images. Signal, Image Video Processing,7(2), 297–306.

    Article  Google Scholar 

  • Thodi, D. M., & Rodriguez, J. J. (2007). Expansion embedding techniques for reversible watermarking. IEEE Transactions on Image Processing,16(3), 721–730.

    Article  MathSciNet  Google Scholar 

  • Tian, J. (2003). Reversible data embedding using a difference expansion. IEEE Transaction on Circuits and Systems for Video Technology,13(8), 890–896.

    Article  Google Scholar 

  • Wang, K., Hu, Y., & Lu, Z. M. (2012). Reversible data hiding for block truncation coding compressed images based on prediction-error expansion. In: 8th international conference on intelligent information hiding and multimedia signal processing (pp. 317–320).

  • Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data compression. Communications of the ACM,30(6), 520–540.

    Article  Google Scholar 

  • Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory,24(5), 530–536.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) Funded by the Ministry of Education (NRF-2018R1D1A1A09081842) and Korea Research Fellowship Program through the National Research Foundation of Korea(NRF) Funded by the Ministry of Science and ICT(2019H1D3A1A01101687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hyun Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, N. & Jung, KH. Color image steganography scheme using gray invariant in AMBTC compression domain. Multidim Syst Sign Process 31, 1145–1162 (2020). https://doi.org/10.1007/s11045-020-00701-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00701-8

Keywords

Navigation