Skip to main content
Log in

Tuning the electronic and optical properties of [26] annulene by electron donor and acceptor groups (push–pull system)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study was aimed at investigating the effect of electron donor and acceptor groups on electrical and optical properties of pi-conjugated [26] annulene. The results of the study showed that almost all selected substitutions reduced the value of \(E_{\mathrm{g}}\) compared with pristine annulene. Calculated dipole moments for the sandwiched forms of annulene are noticeably greater than those of its pristine form, of which the ED2–ANN–QB2 had the maximum value for dipole moment. It was found that the influence of electron donor and acceptor groups on annulene optical properties is very significant. More optical activity improvement was seen in the case of using QB2 and QB3 in one side and other electron donor groups in opposite side of [26] annulene molecule. The higher optical activity of these sandwiched molecules corresponds to higher electron transfer in them. The results of this research may be useful in designing new photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adamson A W, Kalyanasundaram K and Grätzel M 1993 Photosensitization and photocatalysis using inorganic and organometallic compounds (Netherlands: Springer Science Business Media B.V.)

    Google Scholar 

  2. Zhang P, Wang M, Li C, Li X, Dong J and Sun L 2010 Chem. Commun. 46 8806

    Article  CAS  Google Scholar 

  3. Pfeffer M G, Kowacs T, Wächtler M, Guthmuller J, Dietzek B, Vos J G et al 2015 Angew. Chem. 54 6627

  4. Ravve A 2006 Light-associated reactions of synthetic polymers (New York, NY: Springer)

    Google Scholar 

  5. Wu W, Mao D, Xu S, Kenry, Hu F, Li X et al 2018 Chem 4 1937

    Article  CAS  Google Scholar 

  6. Whitehead K and Hedges J I 2005 J. Photochem. Photobiol. B Biol. 80 115

    Article  CAS  Google Scholar 

  7. Koh P W, Hatta M H M, Ong S T, Yuliati L and Lee S L 2017 J. Photochem. Photobiol. B Biol. 332 215

    Article  CAS  Google Scholar 

  8. Rühle S, Shalom M and Zaban A 2010 ChemPhysChem 11 2290

    Article  Google Scholar 

  9. Huizhi Z, Wu L, Gao Y and Ma T 2011 J. Photochem. Photobiol. A Chem. 219 188

    Article  Google Scholar 

  10. Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M and Kurita O 2007 J. Sol. Energy 81 512

    Article  CAS  Google Scholar 

  11. Boyo A O, Shitta M B O, Oluwa T and Adeola S 2012 Trends Appl. Sci. Res. 7 558

    Article  Google Scholar 

  12. Yogo T, Urano Y, Ishitsuka Y, Maniwa F and Nagano T 2005 J. Am. Chem. Soc. 127 12162

    Article  CAS  Google Scholar 

  13. Lissi E A, Encinas M V, Lemp E and Rubio M A 1993 Chem. Rev. 93 699

    Article  CAS  Google Scholar 

  14. Kou J, Dou D and Yang L 2017 Oncotarget 8 81591

    Article  Google Scholar 

  15. Abrahamse H and Hamblin M R 2016 Biochem. J. 473 347

    Article  CAS  Google Scholar 

  16. Ekrami S and Shamlouei H R 2018 Chem. Phys. Lett. 709 26

    Article  CAS  Google Scholar 

  17. Becke A D 1988 Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  18. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  19. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 GAUSSIAN 09 (Wallingford, CT: Gaussian, Inc.)

    Google Scholar 

  20. O’boyle N M, Tenderholt A L and Langner K M 2008 J.Comput. Chem.29 839

    Article  Google Scholar 

  21. Runge E and Gross E K 1984 Phys. Rev. Lett.52 997

    Article  CAS  Google Scholar 

  22. Gross E and Kohn W 1985 Phys. Rev. Lett.55 2850

    Article  CAS  Google Scholar 

  23. Casida M E, Jamorski C, Casida K C and Salahub D R 1998 J. Phys. Chem.108 4439

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shamlouei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 550 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atyabi, S.M., Shamlouei, H.R., Roozbahani, G.M. et al. Tuning the electronic and optical properties of [26] annulene by electron donor and acceptor groups (push–pull system). Bull Mater Sci 43, 72 (2020). https://doi.org/10.1007/s12034-019-2007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2007-x

Keywords

Navigation