Skip to main content

Advertisement

Log in

Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroinflammation plays a vital role in the process of a variety of retinal ganglion cells (RGCs) degenerative diseases including traumatic optic neuropathy (TON). Retinal microglial activation is believed as a harbinger of TON, and robust microglial activation can aggravate trauma-induced RGCs degeneration, which ultimately leads to RGCs loss. Toll like receptor 4 (TLR4)-triggered inflammation is of great importance in retinal inflammatory response after optic nerve injury. CD11b on macrophage and brain microglia can inhibit TLR4-triggered inflammation. However, the functional role of CD11b in retinal microglia is not well understood. Here, using an optic nerve crush model and CD11b gene deficient mice, we found that CD11b protein expression was mainly on retinal microglia, significantly increased after optic nerve injury, and still maintained at a high level till at least 28 days post crush. Compared with wild type mice, following acute optic nerve injury, CD11b deficient retinae exhibited more exacerbated microglial activation, accelerated RGCs degeneration, less growth associated protein-43 expression, as well as more proinflammatory cytokines such as interleukin-6 and tumor necrosis factor α while less anti-inflammatory factors such as arginase-1 and interleukin-10 production. We conclude that CD11b is essential in regulating retinal microglial activation and neuroinflammatory responses after acute optic nerve injury, which is critical for subsequent RGCs degeneration and loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rathnasamy G, Foulds WS, Ling EA, Kaur C (2019) Retinal microglia—a key player in healthy and diseased retina. Prog Neurobiol 173:18–40

    PubMed  Google Scholar 

  2. Choudhury S, Liu Y, Clark AF, Pang IH (2015) Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener 10:40

    PubMed  PubMed Central  Google Scholar 

  3. Li Y, Schlamp CL, Poulsen KP, Nickells RW (2000) Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Exp Eye Res 71(2):209–213

    CAS  PubMed  Google Scholar 

  4. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6(5):712–724

    CAS  PubMed  Google Scholar 

  5. Nakano Y, Shimazawa M, Ojino K, Izawa H, Takeuchi H, Inoue Y, Tsuruma K, Hara H (2017) Toll-like receptor 4 inhibitor protects against retinal ganglion cell damage induced by optic nerve crush in mice. J Pharmacol Sci 133(3):176–183

    CAS  PubMed  Google Scholar 

  6. Levkovitch-Verbin H, Dardik R, Vander S, Melamed S (2010) Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res 91(2):127–134

    CAS  PubMed  Google Scholar 

  7. Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50

    CAS  PubMed  Google Scholar 

  8. Sakai S, Shichita T (2019) Inflammation and neural repair after ischemic brain injury. Neurochem Int 130:104316

    PubMed  Google Scholar 

  9. Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S, Quan N, Fischer AJ (2019) Reactive microglia and IL1beta/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflamm 16(1):118

    Google Scholar 

  10. Gaudet AD, Popovich PG (2014) Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol 258:24–34

    CAS  PubMed  Google Scholar 

  11. Zheng Z, Yuan R, Song M, Huo Y, Liu W, Cai X, Zou H, Chen C, Ye J (2012) The toll-like receptor 4-mediated signaling pathway is activated following optic nerve injury in mice. Brain Res 1489:90–97

    CAS  PubMed  Google Scholar 

  12. Morzaev D, Nicholson JD, Caspi T, Weiss S, Hochhauser E, Goldenberg-Cohen N (2015) Toll-like receptor-4 knockout mice are more resistant to optic nerve crush damage than wild-type mice. Clin Exp Ophthalmol 43(7):655–665

    PubMed  Google Scholar 

  13. Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, Xiong Y, Li S, Su B (2012) Microglial TIR-domain-containing adapter-inducing interferon-beta (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-kappaB. J Neuroinflamm 9:39

    CAS  Google Scholar 

  14. Abram CL, Lowell CA (2009) The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 27:339–362

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kourtzelis I, Mitroulis I, von Renesse J, Hajishengallis G, Chavakis T (2017) From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol 102(3):677–683

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Han C, Jin J, Xu S, Liu H, Li N, Cao X (2010) Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 11(8):734–742

    CAS  PubMed  Google Scholar 

  17. Hu X, Han C, Jin J, Qin K, Zhang H, Li T, Li N, Cao X (2016) Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression. Sci Rep 6:26252

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Lee WB, Kang JS, Kim LK, Kim YJ (2018) Integrin CD11b negatively regulates Mincle-induced signaling via the Lyn-SIRPalpha-SHP1 complex. Exp Mol Med 50(2):e439

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M (2014) Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun 5:3039

    PubMed  Google Scholar 

  20. Bai Y, Qian C, Qian L, Ma F, Hou J, Chen Y, Wang Q, Cao X (2012) Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J Immunol 188(11):5293–5302

    CAS  PubMed  Google Scholar 

  21. Ehirchiou D, Xiong Y, Xu G, Chen W, Shi Y, Zhang L (2007) CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J Exp Med 204(7):1519–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Varga G, Balkow S, Wild MK, Stadtbaeumer A, Krummen M, Rothoeft T, Higuchi T, Beissert S, Wethmar K, Scharffetter-Kochanek K, Vestweber D, Grabbe S (2007) Active MAC-1 (CD11b/CD18) on DCs inhibits full T-cell activation. Blood 109(2):661–669

    CAS  PubMed  Google Scholar 

  23. Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan HB (2018) [EXPRESS] CD11b activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain. https://doi.org/10.1177/1744806918808150

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Chen X, Yin X, Yuan R, Wang B, Ye J (2009) NgR RNA interference, combined with zymosan intravitreal injection, enhances optic nerve regeneration. J Neurochem 110(5):1628–1634

    CAS  PubMed  Google Scholar 

  25. Zhou JX, Liu YJ, Chen X, Zhang X, Xu J, Yang K, Wang D, Lin S, Ye J (2018) Low-intensity pulsed ultrasound protects retinal ganglion cell from optic nerve injury induced apoptosis via yes associated protein. Front Cell Neurosci 12:160

    PubMed  PubMed Central  Google Scholar 

  26. Hilla AM, Diekmann H, Fischer D (2017) Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury. J Neurosci 37(25):6113–6124

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith NM, Giacci MK, Gough A, Bailey C, McGonigle T, Black AMB, Clarke TO, Bartlett CA, Swaminathan Iyer K, Dunlop SA, Fitzgerald M (2018) Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma. J Neuroinflamm 15(1):201

    Google Scholar 

  28. Beynon SB, Walker FR (2012) Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 225:162–171

    CAS  PubMed  Google Scholar 

  29. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    CAS  PubMed  Google Scholar 

  30. Noailles A, Fernandez-Sanchez L, Lax P, Cuenca N (2014) Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects. J Neuroinflamm 11:186

    Google Scholar 

  31. Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B, Liu X, He C (2017) Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat 11:77

    PubMed  PubMed Central  Google Scholar 

  32. Perego C, Fumagalli S, Zanier ER, Carlino E, Panini N, Erba E, De Simoni MG (2016) Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiol Dis 96:284–293

    CAS  PubMed  Google Scholar 

  33. Norden DM, Muccigrosso MM, Godbout JP (2015) Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 96(Pt A):29–41

    CAS  PubMed  Google Scholar 

  34. Leibinger M, Muller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 29(45):14334–14341

    PubMed  PubMed Central  Google Scholar 

  35. Heskamp A, Leibinger M, Andreadaki A, Gobrecht P, Diekmann H, Fischer D (2013) CXCL12/SDF-1 facilitates optic nerve regeneration. Neurobiol Dis 55:76–86

    CAS  PubMed  Google Scholar 

  36. Leibinger M, Andreadaki A, Diekmann H, Fischer D (2013) Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration. Cell Death Dis 4:e805

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Darshit BS, Ramanathan M (2016) Activation of AKT1/GSK-3beta/beta-catenin-TRIM11/survivin pathway by novel GSK-3beta inhibitor promotes neuron cell survival: study in differentiated SH-SY5Y cells in OGD model. Mol Neurobiol 53(10):6716–6729

    CAS  PubMed  Google Scholar 

  38. Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20(12):4615–4626

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25(2):147–170

    CAS  PubMed  Google Scholar 

  40. Tse BC, Dvoriantchikova G, Tao W, Gallo RA, Lee JY, Pappas S, Brambilla R, Ivanov D, Tse DT, Pelaez D (2018) Tumor necrosis factor inhibition in the acute management of traumatic optic neuropathy. Invest Ophthalmol Vis Sci 59(7):2905–2912

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26(49):12633–12641

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koeberle PD, Gauldie J, Ball AK (2004) Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. Neuroscience 125(4):903–920

    CAS  PubMed  Google Scholar 

  43. Mac Nair CE, Schlamp CL, Montgomery AD, Shestopalov VI, Nickells RW (2016) Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways. J Neuroinflamm 13(1):93

    Google Scholar 

  44. Wee YV (2010) Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16(4):408–420

    Google Scholar 

  45. Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S (2006) Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 124(4):520–526

    CAS  PubMed  Google Scholar 

  46. Baptiste DC, Powell KJ, Jollimore CA, Hamilton C, LeVatte TL, Archibald ML, Chauhan BC, Robertson GS, Kelly ME (2005) Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 134(2):575–582

    CAS  PubMed  Google Scholar 

  47. Tezel G, Yang X, Yang J, Wax MB (2004) Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996(2):202–212

    CAS  PubMed  Google Scholar 

  48. Palin K, Cunningham C, Forse P, Perry VH, Platt N (2008) Systemic inflammation switches the inflammatory cytokine profile in CNS Wallerian degeneration. Neurobiol Dis 30(1):19–29

    CAS  PubMed  Google Scholar 

  49. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23(6):2284–2293

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lefort CT, Hyun YM, Schultz JB, Law FY, Waugh RE, Knauf PA, Kim M (2009) Outside-in signal transmission by conformational changes in integrin Mac-1. J Immunol 183(10):6460–6468

    CAS  PubMed  Google Scholar 

  52. Zhou H, Liao J, Aloor J, Nie H, Wilson BC, Fessler MB, Gao HM, Hong JS (2013) CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. J Immunol 190(1):115–125

    CAS  PubMed  Google Scholar 

  53. Doster SK, Lozano AM, Aguayo AJ, Willard MB (1991) Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron 6(4):635–647

    CAS  PubMed  Google Scholar 

  54. Goldberg JL, Barres BA (2000) The relationship between neuronal survival and regeneration. Annu Rev Neurosci 23:579–612

    CAS  PubMed  Google Scholar 

  55. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–316

    PubMed  Google Scholar 

  56. Solovjov DA, Pluskota E, Plow EF (2005) Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2. J Biol Chem 280(2):1336–1345

    CAS  PubMed  Google Scholar 

  57. Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Boyd ZS, Kriatchko A, Yang J, Agarwal N, Wax MB, Patil RV (2003) Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest Ophthalmol Vis Sci 44(12):5206–5211

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yuan-Guo Zhou from Army Medical Center of PLA and Prof. Feng Mei from Army Medical University for project consultation and kind review of the manuscript, and thank Prof. Bo Peng from ShenZhen Institutes of Advanced Technology, Chinese Academy of Sciences for his technical support. This work was supported by the Funds of National Natural Science Foundation of China (Nos. 81570840 and 81371006), Basic Research and Frontier Fund of Chongqing (cstc2019jcyj-msxmX0010) and Research Foundation of Dept. Ophthalmology in Daping Hospital, AMU (No. 9-2543).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yan or Jian Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, XF., Lin, S., Geng, Z. et al. Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury. Neurochem Res 45, 1072–1085 (2020). https://doi.org/10.1007/s11064-020-02984-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02984-6

Keywords

Navigation