Skip to main content
Log in

Salinization effects on stream biofilm functioning

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Secondary salinization threatens fresh waters worldwide leading to deleterious ecological and economic consequences. The goal of the present study was to assess the potential response of catabolic functions (respiration rate, activities of acid phosphatase and β-glucosidase) of stream biofilms to salinization. Biofilm assemblages from five streams were incubated under controlled conditions in microcosms in spring water under four different treatments: no salt addition (0) and adding 0.25, 1, and 4 g NaCl l−1. Respiration rate at 0.25 g NaCl l−1 was higher than that at 1 and 4 g l−1, the latter concentration presenting the lowest value. Acid phosphatase activity was highest in the treatment without salt addition. The activity of β-glucosidase was highest in the non-salted treatment and at 1 g NaCl l−1. Results reveal salinization as an important threat for catabolism-related functions of stream biofilms, which can compromise nutrient cycling in small shaded streams and consequently the ecosystem services that they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, New York.

    Book  Google Scholar 

  • Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, L. J. Tranvik, G. C. Biology, A. Sciences, P. O. Box, E. A. Davidson, I. A. Janssens, L. Quality, T. H. E. T. Sensitivity, O. F. Decomposition, N. Resource, F. Collins, E. Science & E. Review, 2009. The boundless carbon cycle. Nature Geoscience 2: 598–600.

    Article  CAS  Google Scholar 

  • Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14: 251.

    Article  CAS  Google Scholar 

  • Berger, E., O. Frör & R. B. Schäfer, 2019. Salinity impacts on river ecosystem processes: a critical mini-review. Philosophical Transactions of the Royal Society B The Royal Society 374: 20180010.

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C. J. Schulz, 2013. Salinisation of rivers: an urgent ecological issue. Environmental Pollution 173: 157–167.

    Article  Google Scholar 

  • Cañedo-Argüelles, M., M. Bundschuh, C. Gutiérrez-Cánovas, B. J. Kefford, N. Prat, R. Trobajo & R. B. Schäfer, 2014. Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Science of the Total Environment 476: 634–642.

    Article  Google Scholar 

  • Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör, J. Lazorchak, et al., 2016. Saving freshwater from salts. Science American Association for the Advancement of Science 351: 914–916.

    Article  Google Scholar 

  • Canhoto, C., S. Simões, A. L. Gonçalves, L. Guilhermino & F. Bärlocher, 2017. Stream salinization and fungal-mediated leaf decomposition: a microcosm study. Science of the Total Environment 599: 1638–1645.

    Article  Google Scholar 

  • Castillo, A. M., D. M. T. Sharpe, C. K. Ghalambor & L. F. De León, 2018. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807: 1–17.

    Article  CAS  Google Scholar 

  • Cochero, J., M. Licursi & N. Gómez, 2017. Effects of pulse and press additions of salt on biofilms of nutrient-rich streams. Science of The Total Environment 579: 1496–1503.

    Article  CAS  Google Scholar 

  • Cook, L. J. & S. N. Francoeur, 2013. Effects of simulated short-term road salt exposure on lotic periphyton function. Journal of Freshwater Ecology 28: 211–223.

    Article  Google Scholar 

  • Corsi, S. R., D. J. Graczyk, S. W. Geis, N. L. Booth & K. D. Richards, 2010. A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environmental Science & Technology 44: 7376–7382.

    Article  CAS  Google Scholar 

  • Costello, D. M., K. J. Kulacki, M. E. McCarthy, S. D. Tiegs & B. J. Cardinale, 2018. Ranking stressor impacts on periphyton structure and function with mesocosm experiments and environmental-change forecasts. PLoS ONE Public Library of Science 13: e0204510.

    Article  Google Scholar 

  • Entrekin, S. A., N. A. Clay, A. Mogilevski, B. Howard-Parker & M. A. Evans-White, 2019. Multiple riparian-stream connections are predicted to change in response to salinization. Philosophical Transactions of the Royal Society B The Royal Society 374: 20180042.

    Article  CAS  Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land. BioScience 52: 905–916.

    Article  Google Scholar 

  • Hall, R. O. & J. L. Meyer, 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology 79: 1995–2012.

    Article  Google Scholar 

  • Hall, R. O., J. L. Tank, M. A. Baker, E. J. Rosi-Marshall & E. R. Hotchkiss, 2016. Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19: 73–86.

    Article  CAS  Google Scholar 

  • Hintz, W. D. & R. A. Relyea, 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biology 64: 1081–1097.

    Article  Google Scholar 

  • Kaushal, S. S., G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman & M. Grese, 2018. Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences 115: E574–E583.

    Article  CAS  Google Scholar 

  • Kefford, B. J., G. L. Hickey, A. Gasith, E. Ben-David, J. E. Dunlop, C. G. Palmer, K. Allan, S. C. Choy & C. Piscart, 2012. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France, Israel and South Africa. PLoS ONE 7: e35224.

    Article  CAS  Google Scholar 

  • Mamilov, A., O. M. Dilly, S. Mamilov & K. Inubushi, 2004. Microbial eco-physiology of degrading aral sea wetlands: consequences for C-cycling. Soil Science and Plant 50: 839–842.

    Article  Google Scholar 

  • Meyer, J. L. & J. B. Wallace, 2001. Lost Linkages and Lotic Ecology: Rediscovering Small Streams. In Press, M. C., N. J. Huntly & S. Levin (eds), Ecology: Achievement and Challenge. Blackwell Scientific, Oxford: 295–317.

    Google Scholar 

  • Mount, D. R., R. J. Erickson, T. L. Highland, J. R. Hockett, D. J. Hoff, C. T. Jenson, T. J. Norberg-King, K. N. Peterson, Z. M. Polaske & S. Wisniewski, 2016. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry. Environmental Toxicology and Chemistry 35: 3039–3057.

    Article  CAS  Google Scholar 

  • Nuy, J. K., A. Lange, A. J. Beermann, M. Jensen, V. Elbrecht, O. Röhl, D. Peršoh, D. Begerow, F. Leese & J. Boenigk, 2018. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study. Science of The Total Environment 633: 1287–1301.

    Article  CAS  Google Scholar 

  • Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. BioScience 29: 349–352.

    Article  Google Scholar 

  • Pereda, O., V. Acuña, D. von Schiller, S. Sabater & A. Elosegi, 2019. Immediate and legacy effects of urban pollution on river ecosystem functioning: a mesocosm experiment. Ecotoxicology and Environmental Safety 169: 960–970.

    Article  CAS  Google Scholar 

  • Ponsatí, L., N. Corcoll, M. Petrović, Y. Picó, A. Ginebreda, E. Tornés, H. Guasch, D. Barceló & S. Sabater, 2016. Multiple-stressor effects on river biofilms under different hydrological conditions. Freshwater Biology 61: 2102–2115.

    Article  Google Scholar 

  • Power, M. E. & W. E. Dietrich, 2002. Food webs in river networks. Ecological Research 17: 451–471.

    Article  Google Scholar 

  • Pu, Y., W. Y. Ngan, Y. Yao & O. Habimana, 2019. Could benthic biofilm analyses be used as a reliable proxy for freshwater environmental health? Environmental Pollution 252: 440–449.

    Article  CAS  Google Scholar 

  • R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Roache, M. C., P. C. Bailey & P. I. Boon, 2006. Effects of salinity on the decay of the freshwater macrophyte, Triglochin procerum. Aquatic Botany 84: 45–52.

    Article  CAS  Google Scholar 

  • Romaní, A. M., 2010. Freshwater biofilms. In Dürr, S. & J. C. Thomason (eds), Biofouling. Wiley, Oxford: 137–153.

    Google Scholar 

  • Saiya-Cork, K. R., R. L. Sinsabaugh & D. R. Zak, 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry 34: 1309–1315

    Article  CAS  Google Scholar 

  • Silva, E. I. L. & R. W. Davies, 1999. The effects of simulated irrigation induced changes in salinity on metabolism of lotic biota. Hydrobiologia 416: 193–202.

    Article  Google Scholar 

  • Silva, E. I. L., A. Shimizu & H. Matsunami, 2000. Salt pollution in a Japanese stream and its effects on water chemistry and epilithic algal chlorophyll-a. Hydrobiologia 437: 139–148.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L. & J. J. Follstad Shah, 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics 43: 313–343.

    Article  Google Scholar 

  • Tiwari, A. & J. W. Rachlin, 2018. A review of road salt ecological impacts. Northeastern Naturalist 25: 123–143.

    Article  Google Scholar 

  • Tyree, M., N. Clay, S. Polaskey & S. Entrekin, 2016. Salt in our streams: even small sodium additions can have negative effects on detritivores. Hydrobiologia 775: 109–122.

    Article  CAS  Google Scholar 

  • Wu, Y., J. Liu & E. R. Rene, 2018. Periphytic biofilms: a promising nutrient utilization regulator in wetlands. Bioresource Technology 248: 44–48.

    Article  CAS  Google Scholar 

  • Zhang, L., G. Gao, X. Tang & K. Shao, 2014. Impacts of different salinities on bacterial biofilm communities in fresh water. Canadian Journal of Microbiology 60: 319–326.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by FCT/MEC through national funds and the co-funding by the FEDER, within the PT2020 Partnership Agreement, and COMPETE 2020, within the Project UID/BIA/04004/2013; Project ReNATURE—Valorization of the Natural Endogenous Resources of the Centro Region (Centro 2020, Centro-01-0145- FEDER-000007) also supports AM (fellowship reference ReNATURE – BPD11_2). The authors thank the efforts of the two anonymous reviewers and Felix Bärlocher for improving the manuscript and proofreading the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aingeru Martínez.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, A., Gonçalves, A.L. & Canhoto, C. Salinization effects on stream biofilm functioning. Hydrobiologia 847, 1453–1459 (2020). https://doi.org/10.1007/s10750-020-04199-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04199-w

Keywords

Navigation