Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular, cardiac and renal target organ damage associated to arterial hypertension: which noninvasive tools for detection?

Abstract

Arterial hypertension is a systemic condition characterized by elevated blood pressure in the vascular system. Despite the great effort of scientific community to sensitize population to the problem, enforcing the preventive and treatment measures, this condition continues to be responsible for a large portion of global mortality, as it represents one of the major modifiable risk factors of cardiovascular disease. The significant and substantial clinical implications of high blood pressure on cardiovascular morbidity and mortality are explained by the effect of hypertension on specific organs, particularly sensitive to the effects of changes in blood pressure, resulting cardiac remodeling, cerebrovascular disease, renal failure, atherosclerotic vascular disease, and retinopathy, hence the term “target organ damage”. The aim of this review is to give an overview of several noninvasive tools useful in the detection of organ damage related to arterial hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of target organ damage on vessels, heart and kidney arterial hypertension (AH) related.

Similar content being viewed by others

References

  1. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mmHg, 1990-2015. JAMA. 2017;317:165–182. https://doi.org/10.1001/jama.2016.19043.

    Article  PubMed  Google Scholar 

  2. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383:1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67. https://doi.org/10.1016/S0140-6736(15)01225-8. Epub 2015 Dec 24.

    Article  PubMed  Google Scholar 

  4. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  5. Morrissey EC, Durand H, Nieuwlaat R, Navarro T, Haynes RB, Jane C. Walsh et al. Effectiveness and content analysis of interventions to enhance medication adherence and blood pressure control in hypertension: a systematic review and meta-analysis. Psychol Health. 2017:32:1–38.

  6. Whelton PK, Carey RM, Aronow WS, Casey D Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017. pii: S0735-1097(17)41519-1. https://doi.org/10.1016/j.jacc.2017.11.006.

  7. Wright J Jr, Cushman W, Oparil S, Cheung AK, Rocco Reboussin DM, et al. SPRINT Research Group. a randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16. https://doi.org/10.1056/NEJMoa1511939

    Article  CAS  PubMed  Google Scholar 

  8. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and metaanalysis. Lancet. 2016;387:435–43. https://doi.org/10.1016/S0140-6736(15)00805-3. Epub 2015 Nov 7.

    Article  PubMed  Google Scholar 

  9. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and metaanalysis. Lancet. 2015. https://doi.org/10.1016/S0140-6736(15)01225-01228.

    Article  PubMed  Google Scholar 

  10. Hollander W. Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol. 1976;38:786–800.

    Article  CAS  PubMed  Google Scholar 

  11. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

  12. Rubattu S, Pagliaro B, Pierelli G, Santolamazza C, Castro SD, Mennuni S, et al. Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. Int J Mol Sci. 2014;16:823–39. https://doi.org/10.3390/ijms16010823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmieder RE. End organ damage in hypertension. Dtsch Arztebl Int. 2010;107:866–73.

    PubMed  PubMed Central  Google Scholar 

  14. Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: a multifactorial process. Exp Clin Cardiol. 2002;7:40–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaromytidou M, Siasos G, Coskun AU, Lucier M, Antoniadis AP, Papafaklis MI, et al. Intravascular hemodynamics and coronary artery disease: new insights and clinical implications. Hellenic J Cardiol. 2016;57:389–400. https://doi.org/10.1016/j.hjc.2016.11.019. Epub 2016 Nov 25.

    Article  PubMed  Google Scholar 

  16. Steinman DA. Simulated pathline visualization of computed periodic blood flow patterns. J Biomech. 2000;33:623e628.

    Article  Google Scholar 

  17. Kwak BR, Back M, Bochaton-Piallat ML, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35:3013e3020, 20ae20d.

    Article  CAS  Google Scholar 

  18. Fishman AP. Endothelium: a distributed organ of diverse capabilities. Ann NY Acad Sci. 1982;401:1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Cahill PA, Redmond EM. Vascular endothelium—gatekeeper of vessel health. Atherosclerosis. 2016;248:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Della Rocca DG, Pepine CJ. Endothelium as a predictor of adverse outcomes. Clin Cardiol. 2010;33:730–2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dharmashankar K, Widlansky ME. Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep. 2010;12:448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gkaliagkousi E, Douma S, Zamboulis C, Ferro A. Nitric oxide dysfunction in vascular endothelium and platelets: role in essential hypertension. J Hypertens. 2009;27:2310–20.

    Article  CAS  PubMed  Google Scholar 

  23. Gkaliagkousi E, Passacquale G, Douma S, Zamboulis C, Ferro A. Platelet activation in essential hypertension: implications for anti- platelet treatment. Am J Hypertens. 2010;23:229–36.

    Article  CAS  PubMed  Google Scholar 

  24. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–67.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.

    Article  CAS  PubMed  Google Scholar 

  26. Muiesan ML, Salvetti M, Monteduro C, Corbellini C, Guelfi D, Rizzoni D, et al. Flow-mediated dilatation of the brachial artery and left ventricular geometry in hypertensive patients. J Hypertens. 2001;19:641–7.

    Article  CAS  PubMed  Google Scholar 

  27. Yeboah J, Crouse JR, Bluemke DA, Lima JA, Polak JF, Burke GL, et al. Endothelial dysfunction is associated with left ventricular mass (assessed using MRI) in an adult population (MESA). J Hum Hypertens. 2011;25:25–31.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235–41.

    Article  CAS  PubMed  Google Scholar 

  29. Miniello VL, Faienza MF, Scicchitano P, Cortese F, Gesualdo M, Zito A, et al. Insulin resistance and endothelial function in children and adolescents. Int J Cardiol. 2014;15:343–7.

    Article  Google Scholar 

  30. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120:502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol. 2002;40:505–10.

    Article  PubMed  Google Scholar 

  32. Takishima I, Nakamura T, Hirano M, Kitta Y, Kobayashi T, Fujioka D. Predictive value of serial assessment of endothelial function in chronic heart failure. Int J Cardiol. 2012;158:417–22.

    Article  PubMed  Google Scholar 

  33. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.

  34. Poredos P. Endothelial dysfunction and cardiovascular disease. Pathophysiol Haemost Thromb. 2002;32:274–7.

    Article  CAS  PubMed  Google Scholar 

  35. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  36. Koivistoinen T, Virtanen M, Hutri-Kähönen N, Lehtimäki T, Jula A, Juonala M, et al. Arterial pulse wave velocity in relation to carotid intima-media thickness, brachial flow-mediated dilation and carotid artery distensibility: the Cardiovascular Risk in Young Finns Study and the Health 2000 Survey. Atherosclerosis. 2012;220:387–93.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y1, Xu JZ, Wang Y, Tang XF, Gao PJ. Brachial flow-mediated dilation predicts subclinical target organ damage progression in essential hypertensive patients: a 3-year follow-up study. J Hypertens. 2014;32:2393–2400.

    Article  CAS  PubMed  Google Scholar 

  38. Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension. 2009;54:388–92.

    Article  CAS  PubMed  Google Scholar 

  39. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palmiero P, Maiello M, Daly DD Jr, Ciccone MM, Nanda NC. Aortic stiffness assessed by global pulse wave velocity in postmenopausal women: an ultrasonographic study. Echocardiography. 2012;29:1233–8.

    Article  PubMed  Google Scholar 

  41. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  42. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  43. Niiranen TJ, Kalesan B, Hamburg NM, Benjamin E, Mitchell GF, Vasan RS. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the Framingham Heart Study. J Am Heart Assoc. 2016;5:e004271.

  44. Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S. Clinical significance of endothelial dysfunction in essential hypertension. Curr Hypertens Rep. 2015;17:85.

    Article  PubMed  CAS  Google Scholar 

  45. Liu H, Wang H. Early detection system of vascular disease and its application prospect. Biomed Res Int. 2016;2016:1723485.

    PubMed  PubMed Central  Google Scholar 

  46. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American society of echocardiography carotid intima-media thickness task force. Endorsed by the society for vascular medicine. J Am Soc Echocardiogr. 2008;21:93–111. quiz 89-90.

    Article  PubMed  Google Scholar 

  47. Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG, Rosen S, et al. Parallel cardiac and vascular adaptation in hypertension. Circulation. 1992;86:1909–18.

    Article  CAS  PubMed  Google Scholar 

  48. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–406.

    Article  CAS  PubMed  Google Scholar 

  49. Wong M, Edelstein J, Wollman J, Bond MG. Ultrasonic-pathological comparison of the human arterial wall: verification of intima-media thickness. Arterioscler Thromb. 1993;13:482–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ciccone MM, Bilianou E, Balbarini A, Gesualdo M, Ghiadoni L, Metra M, et al. Task force on: ‘Early markers of atherosclerosis: in uence of age and sex’. J Cardiovasc Med. 2013;14:757–66.

    Article  Google Scholar 

  51. Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, et al. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119:1005–12.

    Article  PubMed  Google Scholar 

  52. Ghiadoni L, Taddei S, Virdis A, Sudano I, Di Legge V, Meola M, et al. Endothelial function and common carotid artery wall thickening in patients with essential hypertension. Hypertension. 1998;32:25–32.

    Article  CAS  PubMed  Google Scholar 

  53. Hashimoto M, Eto M, Akishita M, Kozaki K, Ako J, Iijima K, et al. Correlation between flow- mediated vasodilatation of the brachial artery and intima-media thickness in the carotid artery in men. Arterioscler Thromb Vasc Biol. 1999;19:2795–800.

    Article  CAS  PubMed  Google Scholar 

  54. Juonala M, Viikari JS, Laitinen T, Marniemi J, Helenius H, Rönnemaa T, et al. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults: the cardiovascular risk in young Finns study. Circulation. 2004;110:2918–23.

    Article  PubMed  Google Scholar 

  55. Carpenter M, Sinclair H, Kunadian V. Carotid intima media thickness and its utility as a predictor of cardiovascular disease: a review of evidence. Cardiol Rev 2016;24:70–5.

    Article  PubMed  Google Scholar 

  56. Lorenz MW, Schaefer C, Steinmetz H, Sitzer M. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). Eur Heart J. 2010;31:2041–8.

    Article  PubMed  Google Scholar 

  57. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima media thickness: a systematic review and meta analysis. Circulation. 2007;115:459–67.

    Article  PubMed  Google Scholar 

  59. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55:1600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lakka TA, Salonen R, Kaplan GA, Salonen JT. Blood pressure and the progression of carotid atherosclerosis in middle-aged men. Hypertension. 1999;34:51–6.

    Article  CAS  PubMed  Google Scholar 

  61. Su TC, Lee YT, Chou S, Hwang WT, Chen CF, Wang JD. Twenty-four-hour ambulatory blood pressure and duration of hypertension as major determinants for intima-media thickness and atherosclerosis of carotid arteries. Atherosclerosis. 2006;184:151–6.

    Article  CAS  PubMed  Google Scholar 

  62. Ferreira JP, Girerd N, Bozec E, Machu JL, Boivin JM, London GM, et al. Intima-media thickness is linearly and continuously associated with systolic blood pressure in a population-based cohort (STANISLAS cohort study). J Am Heart Assoc. 2016;5:e003529.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ren L, Shi M, Wu Y, Ni J, Bai L, Lu H, et al. Correlation between hypertension and common carotid artery intima-media thickness in rural China: a population-based study. J Hum Hypertens. 2018;32:548–54.

    Article  PubMed  Google Scholar 

  64. Takase H, Sugiura T, Murai S, Yamashita S, Ohte N, Dohi Y. Carotid intima-media thickness is a novel predictor of new onset of hypertension in normotensive subjects. Medicine. 2017;96:e7710.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Magnussen CG. Carotid artery intima-media thickness and hypertensive heart disease: a short review. Clin Hypertens. 2017;23:7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zielinski T, Dzielinska Z, Januszewicz A, Rynkun D, Makowiecka Ciesla M, Tyczynski P, et al. Carotid intima-media thick-ness as a marker of cardiovascular risk in hypertensive patients with coronary artery disease. Am J Hypertens. 2007;20:1058–64.

    Article  PubMed  Google Scholar 

  67. Zanchetti A, Hennig M, Hollweck R, Bond G, Tang R, Cuspidi C, et al. Baseline values but not treatment-induced changes in carotid intima-media thickness predict incident cardiovascular events in treated hypertensive patients: findings in the European Lacidipine Study on Atherosclerosis (ELSA). Circulation. 2009;120:1084–90.

    Article  PubMed  Google Scholar 

  68. Costanzo P, Perrone-Filardi P, Vassallo E, Paolillo S, Cesarano P, Brevetti G, et al. Does carotid intima- media thickness regression predict reduction of cardiovascular events? A meta-analysis of 41 randomized trials. J Am Coll Cardiol. 2010;56:2006–20.

    Article  PubMed  Google Scholar 

  69. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–82.

    Article  CAS  PubMed  Google Scholar 

  70. Marwick TH, Gillebert TC, Aurigemma G, Chirinos J, Derumeaux G, Galderisi M, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). Eur Heart J Cardiovasc Imaging. 2015;16:577–605.

    PubMed  Google Scholar 

  71. Jennings G. Obesity and left ventricular hypertrophy: does my heart look big on this? J Hypertens. 2010;28:2190–3.

    Article  CAS  PubMed  Google Scholar 

  72. Cheng S, Xanthakis V, Sullivan LM, Lieb W, Massaro J, Aragam J, et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation. 2010;122:570–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol. 2011;8:673–85.

    Article  PubMed  Google Scholar 

  74. Cheng S, Fernandes VR, Bluemke DA, McClelland RL, Kronmal RA, Lima JA, et al. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2009;2:191–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharm Physiol. 2007;34:255–62.

    Article  CAS  Google Scholar 

  76. Leite-Moreira AF. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart. 2006;92:712–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Italian Society of Hypertension. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26:343–9.

    Article  CAS  PubMed  Google Scholar 

  78. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6.

    Article  CAS  PubMed  Google Scholar 

  79. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7:79–108.

    Article  PubMed  Google Scholar 

  80. Masiha S, Sundstrom J, Lind L. Left ventricular geometric patterns and adaptations to hemodynamics are similar in elderly men and women. BMC Cardiovasc Disord. 2011;11:25.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Masugata H, Senda S, Inukai M, Murao K, Hosomi N, Iwado Y, et al. Differences in left ventricular diastolic dysfunction between eccentric and concentric left ventricular hypertrophy in hypertensive patients with preserved systolic function. J Int Med Res. 2011;39:772–9.

    Article  CAS  PubMed  Google Scholar 

  82. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The Seventh Report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  83. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  84. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  85. Verdecchia P, Angeli F, Achilli P, Castellani C, Broccatelli A, Gattobigio R, et al. Echocardiographic left ventricular hypertrophy in hypertension: marker for future events or mediator of events? Curr Opin Cardiol. 2007;22:329–34.

    Article  PubMed  Google Scholar 

  86. Lapu-Bula R, Ofili E. From hypertension to heart failure: role of nitric oxide- mediated endothelial dysfunction and emerging insights from myocardial contrast echocardiography. Am J Cardiol. 2007;99:7D–14D.

    Article  CAS  PubMed  Google Scholar 

  87. Gosse P. Left ventricular hypertrophy as a predictor of cardiovascular risk. J Hypertens. 2005;23(Suppl):S27–33.

    Article  CAS  Google Scholar 

  88. Maiello M, Zito A, Cecere A, Ciccone MM, Palmiero P. Left ventricular diastolic dysfunction in normotensive postmenopausal women with type 2 diabetes mellitus. Cardiol J. 2017;24:51–6.

    Article  PubMed  Google Scholar 

  89. Palmiero P, Zito A, Maiello M, Cameli M, Modesti PA, Muiesan ML, et al. Left ventricular diastolic function in hypertension: methodological considerations and clinical implications. J Clin Med Res. 2015;7:137–44.

    Article  PubMed  Google Scholar 

  90. Nadruz W, Shah AM, Solomon SD. Diastolic dysfunction and hypertension. Med Clin North Am. 2017;101:7–17.

    Article  PubMed  Google Scholar 

  91. Palmiero P, Maiello M, Daly DD, Zito A, Ciccone MM, Nanda NC. Relationship between global pulse wave velocity and diastolic dysfunction in postmenopausal women. Int J Clin Exp Med. 2014;7:5629–35.

    PubMed  PubMed Central  Google Scholar 

  92. Abhayaratna WP, Srikusalanukul W, Budge MM. Aortic stiffness for the detection of preclinical left ventricular diastolic dysfunction: pulse wave velocity versus pulse pressure. J Hypertens. 2008;26:758–64.

    Article  CAS  PubMed  Google Scholar 

  93. Krishnamoorthy A, Brown T, Ayers CR, Gupta S, Rame JE, Patel PC, et al. Progression from normal to reduced left ventricular ejection fraction in patients with concentric left ventricular hypertrophy after long-term follow-up. Am J Cardiol. 2011;108:997–1001.

    Article  PubMed  Google Scholar 

  94. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D. Left atrial size and the risk of stroke and death. The Framingham Heart study. Circulation. 1995;92:835–41.

    Article  CAS  PubMed  Google Scholar 

  95. Cuspidi C, Meani S, Fusi V, Valerio C, Catini E, Sala C, et al. Prevalence and correlates of left atrial enlargement in essential hypertension: role of ventricular geometry and the metabolic syndrome: the evaluation of target organ damage in hypertension study. J Hypertens. 2005;23:875–82.

    Article  CAS  PubMed  Google Scholar 

  96. Mulè G, Castiglia A, Cusumano C, Scaduto E, Geraci G, Altieri D, et al. Subclinical kidney damage in hypertensive patients: a renal window opened on the cardiovascular system. focus on microalbuminuria. Adv Exp Med Biol. 2017;956:279–306.

  97. Dianzumba SB, DiPette D, Joyner CR, Townsend R, Weber E, Mauro K, et al. Left ventricular function in mild hypertension after adrenergic blockade. Hypertension. 1988;11:I98–102.

    Article  CAS  PubMed  Google Scholar 

  98. Ruilope LM. The kidney as a sensor of cardiovascular risk in essential hypertension prevalence of mild renal insufficiency in essential hypertension. J Am Soc Nephrol. 2002;13 Suppl 3:S165–8.

  99. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–52.

    Article  PubMed  Google Scholar 

  100. Levin A, Stevens PE, Bilous RW, Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group et al. Mild Renal Dysfunction and Cardiovascular Risk KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;4 Suppl 3:136–150.

  101. Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16:489–95.

    Article  PubMed  Google Scholar 

  102. Mafham M, Emberson J, Landray MJ, Wen CP, Baigent C. Estimated glomerular filtration rate and the risk of major vascular events and all-cause mortality: a meta-analysis. PloS ONE. 2011;6:e25920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364:907–17.

    Article  CAS  PubMed  Google Scholar 

  104. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.

    Article  Google Scholar 

  105. Meccariello A, Buono F, Verrengia E, Orefice G, Grieco F, Romeo F, et al. Microalbuminuria predicts the recurrence of cardiovascular events in patients with essential hypertension. J Hypertens. 2016;34:646–65.

    Article  CAS  PubMed  Google Scholar 

  106. Agrawal B, Berger A, Wolf K, Luft FC. Microalbuminuria screening by reagent strip predicts cardiovascular risk in hypertension. J Hypertens. 1996;14:223–8.

    Article  CAS  PubMed  Google Scholar 

  107. Cerasola G, Mulè G, Cottone S, Nardi E, Cusimano P. Hypertension, microalbuminuria and renal dysfunction: the Renal Dysfunction in Hypertension (REDHY) study. J Nephrol. 2008;21:368–73.

    CAS  PubMed  Google Scholar 

  108. Leoncini G, Viazzi F, Rosei EA, Ambrosioni E, Costa FV, Leonetti G, et al. Chronic kidney disease in hypertension under specialist care: the I-DEMAND study. J Hypertens. 2010;28:156–62.

    Article  CAS  PubMed  Google Scholar 

  109. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity onset diabetes. N Engl J Med. 1984;310:356–60.

    Article  CAS  PubMed  Google Scholar 

  110. Mountokalakis TD. The renal consequences of hypertension. Kidney Int. 1997;51:1639–53.

    Article  CAS  PubMed  Google Scholar 

  111. Dworkin LD, Ichikawa I, Brenner BM. Hormonal modulation of glomerular function. Am J Physiol. 1983;244:F95–F104.

    CAS  PubMed  Google Scholar 

  112. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM, et al. Hyperfiltration in remnant nephrons: a potential adverse response to renal ablation. Am J Physiol. 1981;241:F85–F93.

  113. Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, et al. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet. 1994;344:14–18.

    Article  CAS  PubMed  Google Scholar 

  114. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32:219–26.

    Article  CAS  PubMed  Google Scholar 

  115. Cottone S, Mulè G, Nardi E, Lorito MC, Guarneri M, Arsena R, et al. Microalbuminuria and early endothelial activation in essential hypertension. J Hum Hypertens. 2007;21:167–72.

    Article  CAS  PubMed  Google Scholar 

  116. Pedrinelli R, Dell’Omo G, Di Bello V, Pontremoli R, Mariani M. Microalbuminuria an integrated marker of cardiovascular risk in essential hypertension. J Hum Hypertens. 2002;16:79–89.

    Article  CAS  PubMed  Google Scholar 

  117. Cirillo M, Senigalliesi L, Laurenzi M, Alfieri R, Stamler J, Stamler R, et al. Microalbuminuria in nondiabetic adults: relation of blood pressure, body mass index, plasma cholesterol levels, and smoking: The Gubbio Population Study. Arch Intern Med. 1998;158:1933–9.

    Article  CAS  PubMed  Google Scholar 

  118. Böhm M, Thoenes M, Danchin N, Bramlage P, La Puerta P, Volpe M. Association of cardiovascular risk factors with microalbuminuria in hypertensive individuals: the i-SEARCH global study. J Hypertens. 2007;25:2317–24.

    Article  PubMed  CAS  Google Scholar 

  119. Hsu CC, Brancati FL, Astor BC, Kao WH, Steffes MW, Folsom AR, et al. Blood pressure, atherosclerosis, and albuminuria in 10,113 participants in the Atherosclerosis Risk in Communities Study. J Hypertens. 2009;27:397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cerasola G, Cottone S, D’Ignoto G, Grasso L, Mangano MT, Carapelle E, et al. Microalbuminuria as a predictor of cardiovascular damage in essential hypertension. J Hypertens. 1989;7 Suppl 6:S332–3.

    Article  CAS  Google Scholar 

  121. Pontremoli R, Ravera M, Bezante GP, Viazzi F, Nicolella C, Berruti V, et al. Left ventricular geometry and function in patients with essential hypertension and microalbuminuria. J Hypertens. 1999;17:993–1000.

    Article  CAS  PubMed  Google Scholar 

  122. Cerasola G, Mulè G, Nardi E, Cottone S, Andronico G, Mongiovì R, et al. Usefulness of microalbuminuria in cardiovascular risk stratification of essential hypertensive patients. Nephron Clin Pract. 2004;96:c23–c30.

    Article  Google Scholar 

  123. Wachtell K, Palmieri V, Olsen MH, Bella JN, Aalto T, Dahlöf B, et al. Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: The LIFE study. Losartan Intervention for Endpoint Reduction. Am Heart J. 2002a;143:319–26.

    Article  PubMed  Google Scholar 

  124. Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM. Microalbuminuria is associated with impaired brachial artery, flow- mediated vasodilation in elderly individuals without and with diabetes: Further evidence for a link between microalbuminuria and endothelial dysfunction—The Hoorn Study. Kidney Int. 2004;66(Suppl 92):S42–4.

    Article  Google Scholar 

  125. Geraci G, Mulè G, Costanza G, Mogavero M, Geraci C, Cottone S. Relationship between carotid atherosclerosis and pulse pressure with renal hemodynamics in hypertensive patients. Am J Hypertens. 2016;29:519–27.

    Article  PubMed  Google Scholar 

  126. Furtner M, Kiechl S, Mair A, Seppi K, Weger S, Oberhollenzer F, et al. Urinary albumin excretion is independently associated with carotid and fem- oral artery atherosclerosis in the general population. Eur Heart J. 2005;26:279–87.

    Article  CAS  PubMed  Google Scholar 

  127. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  CAS  PubMed  Google Scholar 

  128. Diercks GF, van Boven AJ, Hillege HL, Janssen WM, Kors JA, de Jong PE, et al. Microalbuminuria is independently associated with ischaemic electrocardiographic abnormalities in a large nondiabetic population. The PREVEND (Prevention of Renal and Vascular Endstage Disease) study. Eur Heart J. 2000;21:1922–7.

    Article  CAS  PubMed  Google Scholar 

  129. Tuttle KR, Puhlman ME, Cooney SK, Short R. Urinary albumin and insulin as predictors of coronary artery disease: an angiographic study. Am J Kidney Dis. 1999;34:918–25.

    Article  CAS  PubMed  Google Scholar 

  130. Viazzi F, Leoncini G, Derchi LE, Pontremoli R. Ultrasound Doppler renal resistive index: a useful tool for the management of the hypertensive patient. J Hypertens. 2015;32:149–53.

    Article  CAS  Google Scholar 

  131. Boddi M. Renal ultrasound (and doppler sonography) in hypertension: an update. Adv Exp Med Biol. 2017;956:191–208.

  132. Ciccone MM, Iacoviello M, Gesualdo L, Puzzovivo A, Antoncecchi V, Doronzo A, et al. The renal arterial resistance index: a marker of renal function with an independent and incremental role in predicting heart failure progression. Eur J Heart Fail. 2014;16:210–6.

    Article  CAS  PubMed  Google Scholar 

  133. Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1:1430–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cortese.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortese, F., Cecere, A., Maria Cortese, A. et al. Vascular, cardiac and renal target organ damage associated to arterial hypertension: which noninvasive tools for detection?. J Hum Hypertens 34, 420–431 (2020). https://doi.org/10.1038/s41371-020-0307-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-0307-7

This article is cited by

Search

Quick links