Skip to main content
Log in

Kinetic Modelling of Levulinic Acid Hydrogenation Over Ru-Containing Polymeric Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work is devoted to kinetic modelling of levulinic acid (LA) hydrogenation to gamma-valerolactone (GVL) in aqueous medium in a batch mode using 5%-Ru/MN100 catalyst, which comprises Ru dioxide nanoparticles confined in polymeric network of hyper-crosslinked polystyrene of MN100 type. Kinetic models of liquid-phase hydrogenation of LA to GVL were proposed based on Langmuir–Hinshelwood and Eley–Rideal mechanisms. Calculations based on experimental data obtained during the study allowed determining the main kinetic parameters of LA hydrogenation reaction and to propose the rate expression adequately describing the catalytic process. Moreover, hypothesis on the reaction mechanism was proposed considering RuO2 as catalytically active phase and 4-hydroxypentanoic acid as main intermediate compound.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuwahara Y, Magatani Y, Yamashita H (2015) Catal Today 258:262

    CAS  Google Scholar 

  2. Yan L, Yao Q, Fu Y (2017) Green Chem 19:5527

    CAS  Google Scholar 

  3. Climent MJ, Corma A, Iborra S (2014) Green Chem 16:516

    CAS  Google Scholar 

  4. Tiong YW, Yap CL, Gan S, Yap WSP (2018) Ind Eng Chem Res 57:4749

    CAS  Google Scholar 

  5. Li X, Li J, Liu X, Tian Q, Hu C (2018) Catalysts 8:241

    Google Scholar 

  6. Li F, Li Z, France LJ, Mu J, Song C, Chen Y, Jiang L, Long J, Li X (2018) Ind Eng Chem Res 57:10126

    CAS  Google Scholar 

  7. Mallesham B, Sudarsanam P, Venkata Shiva Reddy B, Govinda Rao B, Reddy BM (2018) ACS Omega 3:16839

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao X, Wei J, Liu H, Lv X, Tang X, Zeng X, Sun Y, Lei T, Liu S, Lin L (2019) J Chem Technol Biotechnol 94:167

    CAS  Google Scholar 

  9. Guo Y, Li Y, Chen J, Chen L (2016) Catal Lett 146:2041

    CAS  Google Scholar 

  10. Wang L, Han Y, Gao S, Luo Y, Liu L (2018) React Kinet Mech Catal 124:389

    CAS  Google Scholar 

  11. Feng J, Gu X, Xue Y, Han Y, Lu X (2018) Sci Total Environ 633:426

    CAS  PubMed  Google Scholar 

  12. Ruppert AM, Jędrzejczyk M, Potrzebowska N, Kaźmierczak K, Brzezińska M, Sneka-Płatek O, Sautet P, Keller N, Michel C, Grams J (2018) Catal Sci Technol 8:4318

    CAS  Google Scholar 

  13. Hengne AM, Kadu BS, Biradar NS, Chikate RC, Rode CV (2016) RSC Adv 6:59753

    CAS  Google Scholar 

  14. Osatiashtiani A, Lee AF, Wilson K (2017) J. Chem. Technol Biotechnol 92:1125

    CAS  Google Scholar 

  15. Nemanashi M, Noh J-H, Meijboom R (2018) Appl Catal A 550:77

    CAS  Google Scholar 

  16. Zhang B, Wu Q, Zhang C, Su X, Shi R, Lin W, Li Y, Zhao F (2017) ChemCatChem 9:3646

    CAS  Google Scholar 

  17. Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S (2017) Chemsuschem 10:1720

    CAS  PubMed  Google Scholar 

  18. Michel C, Gallezot P (2015) ACS Catal 5:4130

    CAS  Google Scholar 

  19. Kasar GB, Date NS, Bhosale PN, Rode CV (2018) Energ Fuel 32:6887

    CAS  Google Scholar 

  20. Tan J, Cui J, Cui X, Deng T, Li X, Zhu Y, Li Y (2015) ACS Catal 5:7379

    CAS  Google Scholar 

  21. Abdelrahman OA, Heyden A, Bond JQ (2014) ACS Catal 4:1171

    CAS  Google Scholar 

  22. Corbel-Demailly L, Ly B-K, Minh D-P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Chemsuschem 6:2388

    CAS  PubMed  Google Scholar 

  23. Villa A, Schiavoni M, Chan-Thaw CE, Fulvio PF, Mayes RT, Dai S, More KL, Veith GM, Prati L (2015) Chemsuschem 8:2520

    CAS  PubMed  Google Scholar 

  24. Maximov AL, Zolotukhina AV, Mamedli AA, Kulikov LA, Karakhanov EA (2018) ChemCatChem 10:222

    CAS  Google Scholar 

  25. Yan K, Yang Y, Chai J, Lu Y (2015) Appl Catal B 179:292

    CAS  Google Scholar 

  26. Yan Z-P, Lin L, Liu Sh (2009) Energ. Fuel 23:3853

    CAS  Google Scholar 

  27. Ruppert AM, Grams J, Jędrzejczyk M, Matras-Michalska J, Keller N, Ostojska K, Sautet P (2015) Chemsuschem 8:1538

    CAS  PubMed  Google Scholar 

  28. Molleti J, Tiwari MS, Yadav GD (2018) Chem Eng J 334:2488

    CAS  Google Scholar 

  29. Jain AB, Vaidya PD (2016) Can J Chem Eng 94:2364

    CAS  Google Scholar 

  30. Piskun AS, Van de Bovenkamp HH, Rasrendra CB, Winkelman JGM, Heeres HJ (2016) Appl Catal A 525:158

    CAS  Google Scholar 

  31. Mamun O, Walker E, Faheem M, Bond JQ, Heyden A (2016) ACS Catal 7:215

    Google Scholar 

  32. Nikoshvili L, Protsenko I, Abusuek D, Zaykovskaya A, Bykov A, Matveeva V, Sulman E (2017) Chem Eng Trans 61:895

    Google Scholar 

  33. Jones DR, Iqbal S, Miedziak PJ, Morgan DJ, Edwards JK, He Q, Hutchings GJ (2018) Top Catal 61:833

    CAS  Google Scholar 

  34. Xiao C, Goh T-W, Qi Z, Goes S, Brashler K, Perez C, Huang W (2016) ACS Catal 6:593

    CAS  Google Scholar 

  35. Coşkunerfiliz B, Gnanakumar ES, Martinez-Arias A, Gengler R, Rudolf P, Rothenberg G, Shiju NR (2017) Catal Lett 147:1744

    Google Scholar 

  36. Gundekaria S, Srinivasana K (2019) Appl Catal A 569:117

    Google Scholar 

  37. Sapunov VN, Grigoryev MY, Sulman EM, Konyaeva MB, Matveeva VG (2013) J Phys Chem A 117:4073

    CAS  PubMed  Google Scholar 

  38. Valderrama C, Gamisans X, Delasheras FX, Cortina JL, Farrán A (2007) React Funct Polym 67:1515

    CAS  Google Scholar 

  39. Zhu Q, Moggridge GD, Ainte M, Mantle MD, Gladden LF, Dagostino C (2016) Chem Eng J 306:67

    CAS  Google Scholar 

  40. Singh UK, Vannice MA (2001) Appl Catal A 213:1

    CAS  Google Scholar 

  41. Datsevich LB, Muhkortov DA (2004) Appl Catal A 261:143

    CAS  Google Scholar 

  42. Bruehwiler A, Semagina N, Grasemann M, Renken A, Kiwi-Minsker L, Saaler A, Lehmann H, Bonrath W, Roessler F (2008) Ind Eng Chem Res 47:6862

    CAS  Google Scholar 

  43. Zaera F (2001) Prog Surf Sci 69:1

    CAS  Google Scholar 

  44. Mu R, Cantu DC, Lin X, Glezakou V-A, Wang Z, Lyubinetsky I (2014) J Phys Chem Lett 5:3445

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Barry Stein (Department of Biology, Indiana University, United States) and Dr. Lyudmila Bronstein (Department of Chemistry, Indiana University, United States) for help with TEM studies, and also Dr. A.S. Morozov and Dr. I.V. Bessonov (JSC «Advanced medical technologies», Russia) for help with SEM/EDX studies.

Funding

Financial support was provided by the Russian Foundation for Basic Research (Project 18–58-80008) and the Russian Science Foundation (Project 19–19-00490).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors (I.I.P., L.Z.N., V.G.M., E.M.S.). All the authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Linda Zh. Nikoshvili or Valentina G. Matveeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protsenko, I.I., Nikoshvili, L.Z., Matveeva, V.G. et al. Kinetic Modelling of Levulinic Acid Hydrogenation Over Ru-Containing Polymeric Catalyst. Top Catal 63, 243–253 (2020). https://doi.org/10.1007/s11244-020-01223-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01223-0

Keywords

Navigation