Skip to main content
Log in

Strong Narrow Red Emission in a Perturbed Fergusonite System: Y3Mg2Nb3O14:Eu3+ for White LED Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of intense red-emission phosphors, Y3Mg2Nb3O14:Eu3+, with higher color purity were prepared via the conventional high-temperature ceramic route. The influence of Mg2+ ion incorporation in the highly symmetrical YNbO4 lattice on the luminescence properties was studied using powder x-ray diffraction, scanning electron microscopy with energy dispersive spectrometry, UV–visible absorption spectroscopy, and photoluminescence measurements. The developed phosphors crystallize into a monoclinic fergusonite-type structure with a C2/c space group even with the addition of Mg into the system. These phosphors display intense, sharp, red emission with a maximum at 613 nm under near-UV excitation. The photoluminescence studies suggest that Mg addition perturbs the A site network forming cation pairs of Eu3+-Y3+, Eu3+-Mg2+, and Eu3+-Eu3+ connected with O2− ions. The preferential occupation of cations in the A site network by the incorporation of Mg2+ ions in the YNbO4 host lattice induces Eu3+-Eu3+ separation and results in intense, sharp, red emission due to increased radiative probabilities. Moreover, the color purity of the Y3−xMg2Nb3O14:xEu3+ phosphor could achieve 92.4% that is attributed to the narrow full width at half maximum (FWHM ∼ 4 nm) of the red emission peaking at 613 nm. More importantly, the luminescence intensity of the developed phosphor is 9.4 times greater than that of the Philip’s red phosphor under near-UV excitation. Because of the intriguing red luminescence, phosphors exhibit Commission Internationale de l’Elcairage color coordinates (0.63, 0.35) close to the National Television System Committee standards, low correlated color temperature values for warm white lighting, and greater color purity (92.4%) for improving the color rendering index, which makes them a potential candidate for use in the fabrication of white light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pust, P.J. Schmidt, and W. Schnick, Nat. Mater. 14, 454 (2015).

    CAS  Google Scholar 

  2. C.C. Lin, A. Meijerink, and R.S. Liu, J. Phys. Chem. Lett. 7, 495 (2016).

    CAS  Google Scholar 

  3. C.W. Yeh, W.T. Chen, R.S. Liu, S.F. Hu, H.S. Sheu, J.M. Chen, and H.T. Hintzen, J. Am. Chem. Soc. 134, 14108 (2012).

    CAS  Google Scholar 

  4. S.S. Wang, W.T. Chen, Y. Li, J. Wang, H.S. Sheu, and R.S. Liu, J. Am. Chem. Soc. 135, 12504 (2013).

    CAS  Google Scholar 

  5. R.J. Xie, N. Hirosaki, Y. Li, and T. Takeda, Materials 3, 3777 (2010).

    CAS  Google Scholar 

  6. J. Meyer and F. Tappe, Adv. Opt. Mater. 3, 424 (2015).

    CAS  Google Scholar 

  7. G. Li, Y. Tian, Y. Zhao, and J. Lin, Chem. Soc. Rev. 44, 8688 (2015).

    CAS  Google Scholar 

  8. X. Huang, Nat. Photon. 8, 748 (2014).

    CAS  Google Scholar 

  9. P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.-K. Hen, D. Wiechert, C. Scheu, P.J. Schmidt, and W. Schnick, Nat. Mater. 13, 891 (2014).

    CAS  Google Scholar 

  10. T. Takeda, N. Hirosaki, S. Funahashi, and R.J. Xie, Mater. Discov. 1, 29 (2015).

    Google Scholar 

  11. J. Wan, Q. Liu, G. Liu, Z. Zhou, and R.J. Xie, J. Mater. Chem. C 5, 6061 (2017).

    CAS  Google Scholar 

  12. G.E. Yiyao, T. Zhaobo, C. Ying, S. Siyuan, Z. Jie, and X. Zhipeng, J. Rare Earths 35, 430 (2017).

    Google Scholar 

  13. G. Li, Y. Zhao, J. Xu, Z. Mao, J. Chen, and D. Wang, Mater. Chem. Phys. 201, 1 (2017).

    CAS  Google Scholar 

  14. H. Yuan, Z. Huang, F. Chen, Q. Shen, and L. Zhang, J. Alloys Compd. 720, 521 (2017).

    CAS  Google Scholar 

  15. H. Jia, L. Cao, Y. Wei, H. Wang, H. Xiao, G. Li, and J. Lin, J. Alloys Compd. 738, 307 (2018).

    CAS  Google Scholar 

  16. T. Senden, E.J. van Harten, and A. Meijerink, J. Lumin. 194, 131 (2018).

    CAS  Google Scholar 

  17. S. Adachi, J. Lumin. 197, 119 (2018).

    CAS  Google Scholar 

  18. Y. Li, S. Qi, P. Li, and Z. Wang, RSC Adv. 7, 38318 (2017).

    CAS  Google Scholar 

  19. L.Y. Wang, E.H. Song, Y.Y. Zhou, T.T. Deng, S. Ye, and Q.Y. Zhang, J. Mater. Chem. C. 5, 7253 (2017).

    CAS  Google Scholar 

  20. H. Cheng, Y. Song, G. Liu, D. Li, X. Dong, J. Wang, and W. Yu, RSC Adv. 7, 45834 (2017).

    CAS  Google Scholar 

  21. A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, J. Mater Chem. 22, 22126 (2012).

    CAS  Google Scholar 

  22. P.A. Tanner, Chem. Soc. Rev. 42, 5090 (2013).

    CAS  Google Scholar 

  23. G. Blasse, Philips Res. Rep. 24, 131 (1969).

    CAS  Google Scholar 

  24. S.W. Choi, G. Anoop, D.W. Suh, K.P. Kim, H.L. Lee, and J.S. Yoo, J. Rare Earths 30, 205 (2012).

    CAS  Google Scholar 

  25. K. Fulle, C.D. McMillen, L.D. Sanjeewa, and J.W. Kolis, Cryst. Growth Des. 16, 4910 (2016).

    CAS  Google Scholar 

  26. G. Blasse and A. Bril, J. Lumin. 3, 109 (1970).

    CAS  Google Scholar 

  27. G. Blasse, J. Lumin. 14, 231 (1976).

    CAS  Google Scholar 

  28. X. Liu, Y. Lu, C. Chen, S. Luo, Y. Zeng, X. Zhang, M. Shang, C. Li, and J. Lin, J. Phys. Chem. C 118, 27516 (2014).

    CAS  Google Scholar 

  29. M. Hirano and H. Dozono, Mater. Chem. Phys. 143, 860 (2014).

    CAS  Google Scholar 

  30. M. Nazarov, Y.J. Kim, E.Y. Lee, K.I. Min, M.S. Jeong, S.W. Lee, and D.Y. Noh, J. Appl. Phys. 107, 103104 (2010).

    Google Scholar 

  31. Y. Lu, C. Chen, S. Li, X. Liu, L. Yan, Y. Dai, A. Zhang, Y. Xie, and X. Tang, Eur. J. Inorg. Chem. 31, 5262 (2015).

    Google Scholar 

  32. E.Y. Lee and Y.J. Kim, Thin Solid Films 518, 72 (2010).

    Google Scholar 

  33. T.S. Sreena, P. Prabhakar Rao, A.K.V. Raj, and T.R. Aju Thara, J. Alloys Compd. 751, 148 (2018).

    CAS  Google Scholar 

  34. R.D. Shanmon, Acta Crystallogr. A32, 751 (1976).

    Google Scholar 

  35. M.L. Balmer, Y.L. Su, H.W. Xu, E. Bitten, D. McCready, and A. Navrotsky, J. Am. Cerm. Soc. 84, 153 (2001).

    CAS  Google Scholar 

  36. J.I. Langford and A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978).

    CAS  Google Scholar 

  37. H.E. Hoefdraad, J. Solid State Chem. 15, 175 (1975).

    CAS  Google Scholar 

  38. S.K. Lee, H. Chang, C.H. Han, H.J. Kim, H.G. Jang, and H.D. Park, J. Solid State Chem. 156, 267 (2001).

    CAS  Google Scholar 

  39. M. Wiegel, W. Middel, and G. Blasse, J. Mater. Chem. 5, 981 (1995).

    CAS  Google Scholar 

  40. C. Hsu and R.C. Powell, J. Lumin. 10, 273 (1975).

    CAS  Google Scholar 

  41. B. Yan, J.H. Wu, Y. Bing, and J.-H. Wu, Mater. Chem. Phys. 116, 67 (2009).

    CAS  Google Scholar 

  42. C. Liu, J. Liu, and K. Dou, J. Phys. Chem. B. 110, 20277 (2006).

    CAS  Google Scholar 

  43. X. Jing, C. Gibbons, D. Nicholas, J. Silver, X. Zhang, A. Vecht, and C.S. Frampton, J. Mater. Chem. 9, 2913 (1999).

    CAS  Google Scholar 

  44. A.F. Kirby, D. Foster, and F.S. Richardson, Chem. Phys. Lett. 95, 507 (1983).

    CAS  Google Scholar 

  45. H.A. Hoppe, F. Stadler, O. Oeckler, and W. Schnick, Angew. Chem. Int. Ed. 43, 5540 (2004).

    Google Scholar 

  46. O. Oeckler, F. Stadler, T. Rosenthal, and W. Schnick, Solid State Sci. 9, 205 (2007).

    CAS  Google Scholar 

  47. J.A. Kechele, O. Oeckler, F. Stadler, and W. Schnick, Solid State Sci. 11, 537 (2009).

    CAS  Google Scholar 

  48. Y. Liu, Z.G. Lu, Y.Y. Gu, and W. Li, J. Lumin. 132, 1220 (2012).

    CAS  Google Scholar 

  49. T.S. Sreena, P. Prabhakar Rao, A.K.V. Raj, and T.R. Aju Thara, Chem. Sel. 1, 3413 (2016).

    CAS  Google Scholar 

  50. J. Hou, X. Yin, Y. Fang, F. Huang, and W. Jiang, Opt. Mater. 34, 1394 (2012).

    CAS  Google Scholar 

  51. C.S. McCamy, Color Res. Appl. 17, 142 (1992).

    Google Scholar 

  52. Y.F. Wu, Y.T. Nien, Y.J. Wang, and I.G. Chen, J. Am. Ceram. Soc. 95, 1360 (2012).

    CAS  Google Scholar 

  53. Z.P. Lian and Q.F. Yan, J. Mater Chem. C 4, 7959 (2016).

    CAS  Google Scholar 

Download references

Heading

One of the authors, T. S. Sreena, would like to acknowledge the Department of Science and Technology (DST) INSPIRE Programme (Grant No. IF120735) and the Council of Scientific and Industrial Research (CSIR), Govt. of India, for the research facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabhakar Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreena, T.S., Prabhakar Rao, P., Raj, A.K.V. et al. Strong Narrow Red Emission in a Perturbed Fergusonite System: Y3Mg2Nb3O14:Eu3+ for White LED Applications. J. Electron. Mater. 49, 2332–2342 (2020). https://doi.org/10.1007/s11664-020-07990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07990-6

Keywords

Navigation