Skip to main content

Advertisement

Log in

A First-Principles Study of the Adsorption of H2O on Ru- and Mo-Alloyed Pt(111) Surfaces

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A study on the molecular adsorption of a water (H2O) monomer on Pt alloy surfaces with binary Pt-Ru and Pt-Mo and ternary Pt-Ru-Mo surface models was conducted. Some calculations of the interaction between a H2O monomer and the Pt surface were also done for reference. This study is based on density functional theory (DFT) with periodic models and aims to understand the H2O adsorption mechanism. In Pt, Pt-Ru, and Pt-Mo surfaces, H2O preferably adsorbs via an oxygen atom in a flat configuration at the top sites of Pt, Ru, Mo, respectively. However, on the ternary Pt-Ru-Mo surface, the adsorption configuration has the most inclined H2O structure relative to the surface. The results showed that the binding energy of H2O/Pt-Ru-Mo > H2O/Pt-Mo > H2O/Pt-Ru > H2O/Pt. The adsorption mechanism was then clarified by charge transfer and natural bonding. The charge transfer from the surface to the adsorbate is observed in all models, with the greatest charge transfer occurring on the surface of Pt doped with two Mo atoms. This is probably due to the fact that oxygen can attract the most charge on Mo, because the difference in electronegativity is greatest. The calculation results also show that Ru is the most hydrophilic metal for oxygen. However, since the adsorption structure is parallel to the surface, hydrogen (H) is also more sensitive to receive the charge. Subsequently, the most acceptable reason for the most stable adsorption for H2O/Pt-Ru-Mo is that the inclined structure yields the most orbitals hybridization at the H2O's highest occupied molecular orbital (HOMO). This drives the interaction by forming bonding states at the lowest energy and anti-bonding states at the highest energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, and Y.S. Yoon, Chem. Rev. 114, 12397 (2014).

    CAS  Google Scholar 

  2. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D.P. Wilkinson, J. Power Sources 155, 95 (2006).

    CAS  Google Scholar 

  3. V.S. Bagotzky, Y.B. Vassiliev, and O.A. Khazova, J. Electroanal. Chem. 81, 229 (1977).

    Google Scholar 

  4. K. Hengge, T. Gänsler, E. Pizzutilo, C. Heinzl, M. Beetz, K.J.J. Mayrhofer, and C. Scheu, Int. J. Hydrogen Energy 42, 25359 (2017).

    CAS  Google Scholar 

  5. E. Antolini, Energies 10, 42 (2017).

    Google Scholar 

  6. H. Huang, X. Hu, J. Zhang, N. Su, and J. Cheng, Sci. Rep. 7, 45555 (2017).

    CAS  Google Scholar 

  7. O.U. Reyes, P. Roquero, R.H. Maya, A.L.O. Flores, and E.S. Hernández, ECS Trans. 36, 21 (2011).

    CAS  Google Scholar 

  8. E. Antolini, RSC Adv. 6, 3307 (2016).

    CAS  Google Scholar 

  9. P.A. Dub and J.C. Bordon, ACS Catal. 7, 6635 (2017).

    CAS  Google Scholar 

  10. T. Sheng, J.-Y. Ye, W.-F. Lin, and S.-G. Sun, Phys. Chem. Chem. Phys. 19, 7476 (2017).

    CAS  Google Scholar 

  11. C. Roth, A.J. Papworth, I. Hussain, R.J. Nichols, and D.J. Schiffrin, J. Electroanal. Chem. 581, 79 (2005).

    CAS  Google Scholar 

  12. E.E. Brock, Y. Oshima, P.E. Savage, and J.R. Barker, J. Phys. Chem. 100, 15834 (1996).

    CAS  Google Scholar 

  13. J. Staszak-Jirkovský, R. Subbaraman, D. Strmcnik, K.L. Harrison, C.E. Diesendruck, R. Assary, O. Frank, L. Kobr, G.K.H. Wiberg, B. Genorio, J.G. Connell, P.P. Lopes, V.R. Stamenkovic, L. Curtiss, J.S. Moore, K.R. Zavadil, and N.M. Markovic, ACS Catal. 5, 6600 (2015).

    Google Scholar 

  14. N. Kladkaew, R. Idem, P. Tontiwachwuthikul, and C. Saiwan, Ind. Eng. Chem. Res. 48, 10169 (2009).

    CAS  Google Scholar 

  15. J.L. Daschbach, B.M. Peden, R.S. Smith, and B.D. Kay, J. Chem. Phys. 120, 1516 (2004).

    CAS  Google Scholar 

  16. W. Lew, M.C. Crowe, E. Karp, and C.T. Campbell, J. Phys. Chem. C 115, 9164 (2011).

    CAS  Google Scholar 

  17. K. Motobayashi, L. Árnadóttir, C. Matsumoto, E.M. Stuve, H. Jónsson, Y. Kim, and M. Kawai, ACS Nano 8, 11583 (2014).

    CAS  Google Scholar 

  18. J.L.C. Fajín, M.N.D.S. Cordeiro, and J.R.B. Gomes, J. Phys. Chem. A 118, 5832 (2014).

    Google Scholar 

  19. L. Árnadóttir, E.M. Stuve, and H. Jónsson, Surf. Sci. 604, 1978 (2010).

    Google Scholar 

  20. S. Meng, E.G. Wang, and S. Gao, Phys. Rev. B 69, 195404 (2004).

    Google Scholar 

  21. T. Jacob and W.A. Goddard III, Chem. Phys. Chem. 7, 992 (2006).

    CAS  Google Scholar 

  22. D.-B. Kang and C.-K. Lee, Bull. Korean Chem. Soc. 21, 87 (2000).

    CAS  Google Scholar 

  23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    CAS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    CAS  Google Scholar 

  25. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    CAS  Google Scholar 

  26. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    CAS  Google Scholar 

  27. Y. Wang and J.P. Perdew, Phys. Rev. B 44, 13298 (1991).

    CAS  Google Scholar 

  28. T.A. Wesolowski, Hohenberg–Kohn–Sham density functional theory. Molecular Materials with Specific Interactions–Modeling and Design, ed. W.A. Sokalski (Dordrecht: Springer, 2007), pp. 153–201.

    Google Scholar 

  29. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  30. M. Methfessel and A. Paxton, Phys. Rev. B 40, 3616 (1989).

    CAS  Google Scholar 

  31. L. Bengtsson, Phys. Rev. B 59, 12301 (1999).

    CAS  Google Scholar 

  32. V. Branger, V. Pelosin, K.F. Badawi, and P. Goudeau, Thin Solid Films 275, 22 (1996).

    CAS  Google Scholar 

  33. O. Ugalde-Reyes, R. Hernández-Maya, A.L. Ocampo-Flores, F. Alvarez-Ramírez, E. Sosa-Hernández, C. Angeles-Chavez, and P. Roquero, J. Electrochem. Soc. 162, H132 (2015).

    CAS  Google Scholar 

  34. K.R. Lee, M.K. Jeon, and S.I. Woo, Appl. Catal. B 91, 428 (2009).

    CAS  Google Scholar 

  35. W.T. Cahyanto, M.C. Escaño, H. Kasai, and R.L. Arevalo, e-J. Surf. Sci. Nanotechnol. 9, 352 (2011).

    CAS  Google Scholar 

  36. D. Grand, A. Bernas, and E. Amouyal, Chem. Phys. 44, 73 (1979).

    CAS  Google Scholar 

  37. T. Goulet, A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, Chem. Phys. Lett. 170, 492 (1990).

    CAS  Google Scholar 

  38. B.A. Sexton, Surf. Sci. 94, 435 (1980).

    CAS  Google Scholar 

  39. M. Nakamura and M. Ito, Chem. Phys. Lett. 235, 293 (2000).

    Google Scholar 

  40. W.T. Cahyanto, A. Haryadi, Sunardi, A. Basit, and Y. Elina, Indones. J. Chem. 18, 195 (2018).

    CAS  Google Scholar 

  41. R. Bader, Atoms in Molecules: A Quantum Theory (New York: Oxford University Press, 1990).

    Google Scholar 

  42. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

    CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the support of the Directorate of Research and Community Services, Directorate General of Research and Development Strengthening, Ministry of Research, Technology and Higher Education of Indonesia through the grant of ‘‘Penelitian Dasar 2019’’ with the contract no. P/ 1805/UN23/14/PN/2019. WTC would like to thank Tondi, Clara, Ghozi, and Tina for supporting the H2O data of the upright adsorption configuration system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahyu Tri Cahyanto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahyanto, W.T., Zulaehah, S., Abdullatif, F. et al. A First-Principles Study of the Adsorption of H2O on Ru- and Mo-Alloyed Pt(111) Surfaces. J. Electron. Mater. 49, 2642–2650 (2020). https://doi.org/10.1007/s11664-020-07976-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07976-4

Keywords

Navigation