Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves

Abstract

Eukaryotic gene transcription is associated with the eviction of nucleosomes and the formation of open chromatin, which enables the recruitment of transcriptional coactivators and other regulatory factors. Open chromatin is thus a hallmark of functional regulatory DNA elements in genomes. In recent years, formaldehyde-assisted isolation of regulatory elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes, particularly yeast, human, and mouse. However, it has proven challenging to adapt the FAIRE protocol for use on plant material, and the few available protocols all have their drawbacks (e.g., applicability only to specific developmental stages). In this Protocol Extension, we describe a reliable FAIRE protocol for mature Arabidopsis (Arabidopsis thaliana) leaves that adapts the original protocol for use on plants. The main differences between this protocol extension and the earlier FAIRE protocol are an increased formaldehyde concentration in the chromatin crosslinking buffer, application of a repeated vacuum to increase crosslinking efficiency, and altered composition of the DNA extraction buffer. The protocol is applicable to leaf chromatin of unstressed and stressed plants and can be completed within 1 week. Here, we also describe downstream analysis using qPCR and next-generation sequencing. However, this Protocol Extension should also be compatible with downstream hybridization to a DNA microarray. In addition, it is likely that only minor adaptations will be necessary to apply this protocol to other Arabidopsis organs or plant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline for FAIRE from Arabidopsis leaves.
Fig. 2: Nuclei enrichment enhances DNA yield.
Fig. 3: Extent of expression and chromatin state of the SAR-associated PR1 and heat-responsive HSP18.2 genes.

Similar content being viewed by others

Data availability

The unprocessed data of this study are available from the corresponding author upon reasonable request.

References

  1. Wallrath, L. L., Lu, Q., Granok, H. & Elgin, S. C. Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures. Bioessays 16, 165–170 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Boyle, A. P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nagy, P. L., Cleary, M. L., Brown, P. O. & Lieb, J. D. Genome-wide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl. Acad. Sci. USA 100, 6364–6369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, K. et al. Genetic landscape of open chromatin in yeast. PLoS Genet. 9, e1003229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ponts, N. et al. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 20, 228–238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strenkert, D., Schmollinger, S., Sommer, F., Schulz-Raffelt, M. & Schroda, M. Transcription factor-dependent chromatin remodeling at heat shock and copper-responsive promoters in Chlamydomonas reinhardtii. Plant Cell 23, 2285–2301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giresi, P. G. & Lieb, J. D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (formaldehyde assisted isolation of regulatory elements). Methods 48, 233–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simon, J. M., Giresi, P. G., Davis, I. J. & Lieb, J. D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat. Protoc. 7, 256–267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Louwers, M. et al. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell 21, 832–842 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Omidbakhshfard, M. A., Winck, F. V., Arvidsson, S., Riaño-Pachón, D. M. & Mueller-Roeber, B. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana. J. Integr. Plant Biol. 56, 527–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Baum, S. et al. Isolation of open chromatin identifies regulators of systemic acquired resistance in Arabidopsis. Plant Physiol. 181, 817–833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schillheim, B. et al. Sulforaphane modifies histone H3, unpacks chromatin, and primes defense in Arabidopsis. Plant Physiol. 176, 2395–2405 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Song, L. et al. Open chromatin defined by DNase I and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blankenship, R. E. & Hartman, H. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Perduns, R., Horst-Niessen, I. & Peterhaensel, C. Photosynthetic genes and genes associated with the C4 trait in maize are characterized by a unique class of highly regulated histone acetylation peaks on upstream promoters. Plant Physiol. 168, 1378–1388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, W. & Jiang, J. Genome-wide mapping of DNase I hypersensitive sites in plants. Methods Mol. Biol. 1284, 71–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buenrosto, J., Wu, B., Chang, H. & Greenleaf, W. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2016).

    Google Scholar 

  23. Bajic, M., Maher, K. A. & Deal, R. B. Identification of open chromatin regions in plant genomes using ATAC-seq. Methods Mol. Biol. 1675, 183–201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maher, K. A. et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell 30, 15–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. ENCODE Project Consortium. A user’s guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

    Article  Google Scholar 

  26. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berardini, T. Z. et al. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53, 474–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu, Z. Q. & Dong, X. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64, 839–863 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Van Loon, L. C., Rep, M. & Pieterse, C. M. J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162 (2006).

    Article  PubMed  Google Scholar 

  32. Takahashi, T. & Komeda, Y. Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol. Gen. Genet. 219, 365–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Kodama, Y., Nagaya, S., Shinmyo, A. & Kato, K. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Plant Cell Physiol. 48, 459–470 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.F. Beyer for help with the figures. U.C. was supported by a grant from the German Research Foundation (CO 186/13-1) and by the Excellence Initiative of the German federal and state governments.

Author information

Authors and Affiliations

Authors

Contributions

U.C. initiated and supervised the project. M.R.J. introduced S.B. to chromatin techniques. S.B. and E.-M.R.-M. performed the experiments. U.C. wrote the article with contributions from the other authors.

Corresponding author

Correspondence to Uwe Conrath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Jeremy M. Simon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference(s) using this protocol

Baum, S. et al. Plant Physiol. 181, 817–833 (2019): https://doi.org/10.1104/pp.19.00673

Schillheim, B. et al. Plant Physiol. 176, 2395–2405 (2018): https://doi.org/10.1104/pp.17.00124

This protocol is an extension to: Nat. Protoc. 7, 256–267 (2012): https://doi.org/10.1038/nprot.2011.444

Integrated supplementary information

Supplementary Figure 1 Open chromatin in the 5′ regulatory region and around the TSS of the PR1 gene in systemic leaves relative to the UBIQUITIN5 promoter.

The experiment was done three times (n = 3). ***, P = 0.001; **, P = 0.01. Measurements were taken from distinct samples. Normal distribution was assumed for all statistical analyses. Unpaired Student´s t tests (two-sided) was applied using SigmaStat 4.0 (Systat Software, Inc.) to determine whether the observed differences were statistically significant. Changes were considered statistically significant when P ≤ 0.01. Psm, Pseudomonas syringae pv. maculicola; TSS, transcription start site; bp, base pairs; R1 - R3, biological replicates 1–3.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baum, S., Reimer-Michalski, EM., Jaskiewicz, M.R. et al. Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves. Nat Protoc 15, 713–733 (2020). https://doi.org/10.1038/s41596-019-0277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0277-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing